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FOREWORD 

INTRODUCTION 

This is one of a group of handbooks covering 
the engineering information and quantitative 
data needed in the design, development, construc- 
tion, and test of military equipment which (as a 
group) constitute the Army Materiel Command 
Engineering Design Handbook. 

PURPOSE OF HANDBOOK 

The Handbook on Experimental Statistics has 
been prepared as an aid to scientists and engi- 
neers engaged in Army research and develop- 
ment programs, and especially as a guide and 
ready reference for military and civilian person- 
nel who have responsibility for the planning and 
interpretation of experiments and tests relating 
to the performance of Army equipment in the 
design and developmental stages of production. 

SCOPE AND USE OF HANDBOOK 

This Handbook is a collection of statistical 
procedures and tables. It is presented in five 
sections, viz: 

AMCP 706-110, Section 1, Basic Concepts 
and Analysis of Measurement Data (Chapters 
1-6) 

AMCP 706-111, Section 2, Analysis of Enu- 
merative   and   Classificatory   Data    (Chapters 
7-10) 

AMCP 706-112, Section 3, Planning and 
Analysis of Comparative Experiments (Chapters 
11-14) 

AMCP 706-113, Section 4, Special Topics 
(Chapters 15-23) 

AMCP 706-114, Section 5, Tables 

Section 1 provides an elementary introduc- 
tion to basic statistical concepts and furnishes 
full details on standard statistical techniques 
for the analysis and interpretation of measure- 

ment data. Section 2 provides detailed pro- 
cedures for the analysis and interpretation of 
enumerative and classificatory data. Section 3 
has to do with the planning and analysis of com- 
parative experiments. Section 4 is devoted to 
consideration and exemplification of a number 
of important but as yet non-standard statistical 
techniques, and to discussion of various other 
special topics. An index for the material in all 
four sections is placed at the end of Section 4. 
Section 5 contains all the mathematical tables 
needed for application of the procedures given 
in Sections 1 through 4. 

An understanding of a few basic statistical 
concepts, as given in Chapter 1, is necesssary; 
otherwise each of the first four sections is largely 
independent of the others. Each procedure, test, 
and technique described is illustrated by means 
of a worked example. A list of authoritative 
references is included, where appropriate, at the 
end of each chapter. Step-by-step instructions 
are given for attaining a stated goal, and the 
conditions under which a particular procedure is 
strictly valid are stated explicitly. An attempt is 
made to indicate the extent to which results ob- 
tained by a given procedure are valid to a good 
approximation when these conditions are not 
fully met. Alternative procedures are given for 
handling cases where the more standard proce- 
dures cannot be trusted to yield reliable results. 

The Handbook is intended for the user with 
an engineering background who, although he has 
an occasional need for statistical techniques, does 
not have the time or inclination to become an ex- 
pert on statistical theory and methodology. 

The Handbook has been written with three 
types of users in mind. The first is the person 
who has had a course or two in statistics, and 
who may even have had some practical experi- 
ence in applying statistical methods in the past, 
but who does not have statistical ideas and tech- 
niques at his fingertips. For him, the Handbook 
will provide a ready reference source of once 
familiar ideas and techniques.   The second is the 
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person who feels, or has been advised, that some 
particular problem can be solved by means of 
fairly simple statistical techniques, and is in need 
of a book that will enable him to obtain the so- 
lution to his problem with a minimum of outside 
assistance. The Handbook should enable such a 
person to become familiar with the statistical 
ideas, and reasonably adept at the techniques, 
that are most fruitful in his particular line of re- 
search and development work. Finally, there is 
the individual who, as the head of, or as a mem- 
ber of a service group, has responsibility for ana- 
lyzing and interpreting experimental and test 
data brought in by scientists and engineers en- 
gaged in Army research and development work. 
This individual needs a ready source of model 
work sheets and worked examples corresponding 
to the more common applications of statistics, to 
free him from the need of translating textbook 
discussions into step-by-step procedures that can 
be followed by individuals having little or no 
previous experience with statistical methods. 

It is with this last need in mind that some 
of the procedures included in the Handbook have 
been explained and illustrated in detail twice: 
once for the case where the important question 
is whether the performance of a new material, 
product, or process exceeds an established stan- 
dard; and again for the case where the important 
question is whether its performance is not up to 
the specified standards. Small but serious errors 
are often made in changing "greater than" pro- 
cedures into '' less than'' procedures. 

AUTHORSHIP AND ACKNOWLEDGMENTS 
The Handbook on Experimental Statistics 

was prepared in the Statistical Engineering Lab- 
oratory, National Bureau of Standards, under a 
contract with the Department of Army. The 
project was under the general guidance of 
Churchill Eisenhart, Chief, Statistical Engineer- 
ing Laboratory. 

Most of the present text is by Mary G. Na- 
trella, who had overall responsibility for the com- 
pletion of the final version of the Handbook. 
The original plans for coverage, a first draft of 
the text, and some original tables were prepared 
by Paul N. Somerville. Chapter 6 is by Joseph 
M. Cameron; most of Chapter 1 and all of Chap- 
ters 20 and 23 are by Churchill Eisenhart; and 
Chapter 10 is based on a nearly-final draft by 
Mary L. Epling. 

Other members of the staff of the Statistical 
Engineering Laboratory have aided in various 
ways through the years, and the assistance of all 
who helped is gratefully acknowledged. Partic- 
ular mention should be made of Norman C. 
Severo, for assistance with Section 2, and of 
Shirley Young Lehman for help in the collection 
and computation of examples. 

Editorial assistance and art preparation were 
provided by John I. Thompson & Company, 
Washington, D. C. Final preparation and ar- 
rangement for publication of the Handbook were 
performed by the Engineering Handbook Office, 
Duke University. 

Appreciation is expressed for the generous 
cooperation of publishers and authors in grant- 
ing permission for the use of their source materi- 
al. References for tables and other material, 
taken wholly or in part, from published works, 
are given on the respective first pages. 

Elements of the U. S. Army Materiel Com- 
mand having need for handbooks may submit 
requisitions or official requests directly to the 
Publications and Reproduction Agency, Letter- 
kenny Army Depot, Chambersburg, Pennsyl- 
vania 17201. Contractors should submit such 
requisitions or requests to their contracting of- 
ficers. 

Comments and suggestions on this handbook 
are welcome and should be addressed to Army 
Research Office-Durham, Box CM, Duke Station, 
Durham, North Carolina 27706. 
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PREFACE 

This listing is a guide to the Section and Chapter subject coverage in all Sections of the Hand- 
book on Experimental Statistics. 

Chapter Title 

No. 

AMCP 706-110 (SECTION 1) — BASIC STATISTICAL CONCEPTS AND 
STANDARD TECHNIQUES  FOR ANALYSIS AND  INTERPRETATION  OF 

MEASUREMENT DATA 

1 — Some Basic Statistical Concepts and Preliminary Considerations 
2 — Characterizing the Measured Performance of a Material, Product, or Process 
3 — Comparing Materials or Products with Respect to Average Performance 
4 — Comparing Materials or Products with Respect to Variability of Performance 
5 — Characterizing Linear Relationships Between Two Variables 
6 — Polynomial and Multivariable Relationships, Analysis by the Method of Least Squares 

AMCP 706-111 (SECTION 2) —ANALYSIS OF ENUMERATIVE AND 
CLASSIFICATORY DATA 

7 — Characterizing the Qualitative Performance of a Material, Product, or Process 
8 — Comparing Materials or Products with Respect to a Two-Fold Classification of Performance 

(Comparing Two Percentages) 
9 — Comparing Materials or Products with Respect to Several Categories of Performance (Chi-Square 

Tests) 
10 — Sensitivity Testing 

AMCP 706-112 (SECTION 3)—THE PLANNING AND ANALYSIS OF 
COMPARATIVE EXPERIMENTS 

11 — General Considerations in Planning Experiments 
12 — Factorial Experiments 
13 — Randomized Blocks, Latin Squares, and Other Special-Purpose Designs 
14 — Experiments to Determine Optimum Conditions or Levels 

AMCP 706-113 (SECTION 4) — SPECIAL TOPICS 

15 — Some "Short-Cut" Tests for Small Samples from Normal Populations 
16 — Some Tests Which Are Independent of the Fo.'m of the Distribution 
17 — The Treatment of Outliers 
18 — The Place of Control Charts in Experimental Work 
19 — Statistical Techniques for Analyzing Extreme-Value Data 
20 — The Use of Transformations 
21 — The Relation Between Confidence Intervals and Tests of Significance 
22 — Notes on Statistical Computations 
23 — Expression of the Uncertainties of Final Results 
Index 

AMCP 706-114 (SECTION 5) —TABLES 

Tables A-l through A-37 

viii 
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DISCUSSION OF TECHNIQUES 

IN CHAPTERS  11  THROUGH  14 

In this Section, we attempt to give only the 
following coverage: 

(1) some broad consideration to the planning 
of experiments, in Chapter 11; 

(2) some examples of the more widely used 
experimental designs, with appropriate methods 
of analysis, in Chapters 12 and 13; 

(3) a brief description of new techniques that 
are useful when the purpose of experimentation 
is that of seeking maximum or optimum levels 
of the experimental factors, in Chapter 14. 

Participation in the initial stages of experiments in 
different areas of research leads to a strong conviction 
that too little time and effort is put into the planning of 
experiments. The statistician who expects that his con- 
tribution to the planning will involve some technical 
matter in statistical theory finds repeatedly that he 
makes a much more valuable contribution simply by 
getting the investigator to explain clearly why he is doing 
the experiment, to justify the experimental treatments 
whose effects he proposes to compare, and to defend his 
claim that the completed experiment will enable its 
objectives to be realized. . . . 

It is good practice to make a written draft of the pro- 
posals for any experiment. This draft will in general 
have three parts: (i) a statement of the objectives; (ii) a 
description of the experiment, covering such matters as 
the experimental treatments, the size of the experiment, 
and the experimental material; and (iii) an outline of the 
method of analysis of the results. 

Excellent books are available to give more 
extensive catalogs of experimental designs and 
more details regarding precautions in applying 
and analyzing these designs. A list of recom- 
mended books is given at the end of Chapter 11. 
When actually faced with the problem of plan- 
ning an experiment, however, books will not be 
sufficient. The planning of experiments cannot 
be done in an ivory tower; and does not consist 
merely of writing down a few key words or 
parameters, looking them up in an index, and 
then selecting a specific plan. The proper ex- 
perimental plan depends on: the purpose of the. 
experiment; physical restrictions on the process 
of taking measurements; and other restrictions 
imposed by limitations of time, money, and the 
availability of material and personnel, etc. 
The novice experimenter is advised to consult a 
competent statistician and give him all the in- 
formation available — not only what is thought 
to be important, but also what may be thought 
to be unimportant. In the words of Cochran 
and Cox*: 

In outlining the methods of conducting and 
analyzing an experiment, Anderson and Ban- 
croft f give the following advice: 

(i) The experimenter should clearly set forth his ob- 
jectives before proceeding with the experiment. Is 
this a preliminary experiment to determine the 
future course of experimentation, or is it intended 
to furnish answers to immediate questions? Are 
the results to be carried into practical use at once, 
or are they to be used to explain aspects of theory 
not adequately understood before? Are you 
mainly interested in estimates or in tests of sig- 
nificance? Over what range of experimental con- 
ditions do you wish to extend your results? 

(ii) The experiment should be described in detail. The 
treatments should be clearly defined. Is it neces- 
sary to use a control treatment in order to make 
comparisons with past results? The size of the 
experiment should be determined. If insufficient 
funds are available to conduct an experiment from 
which useful results can be obtained, the experi- 
ment should not ba started. And above all, the 
necessary material to conduct the experiment 
should be available. 

(iii) An outline of the analysis should be drawn up before 
the experiment is started. 

All A-Tables referenced in these Chapters are 

contained in AMCP 706-114, Section 5. 

* W. G. Cochran and G. M. Cox, Experimental De- 
signs, (2d edition), p. 10, John Wiley and Sons, Inc., 
New York, N.Y., 1957. 

t R. L. Anderson and T. A. Bancroft, Statistical Theory 
in Research, p. 223, McGraw-Hill Book Co., Inc., New 
York, N.Y., 1952. 

IX 
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CHAPTER  11 

GENERAL CONSIDERATIONS 

IN PLANNING EXPERIMENTS 

11-1    THE NATURE OF EXPERIMENTATION 

An experiment has been denned, in the most 
general sense, as "a considered course of action 
aimed at answering one or more carefully 
framed questions." Observational programs in 
the natural sciences and sample surveys in the 
social sciences are clearly included in this gen- 
eral definition. In ordnance engineering, how- 
ever, we are concerned with a more restricted 
kind of experiment in which the experimenter 
does something to at least some of the things 
under study and then observes the effect of his 
action. 

The things under study which are being delib- 
erately varied in a controlled fashion may be 
called the factors. These factors may be quan- 
titative factors such as temperature which can 
be varied along a continuous scale (at least for 
practical purposes the scale may be called con- 
tinuous) or they may be qualitative factors 
(such as different machines, different operators, 
different composition of charge, etc.). The use 
of the proper experimental pattern aids in the 
evaluation of the factors.    See Paragraph 11-2. 

(1) possible effects due to background vari- 
ables do not affect information obtained about 
the factors of primary interest; and, 

(2) some information about the effects of the 
background variables can be obtained. See 
Paragraph 11-3. 

In addition, there may be variables of which 
the experimenter is unaware which have an 
effect on the outcome of the experiment. The 
effects of these variables may be given an oppor- 
tunity to "balance out" by the introduction of 
randomization into the experimental pattern. 
See Paragraph 11-4. 

Many books have been written on the general 
principles of experimentation, and the book by 
Wilson(1) is especially recommended. There 
are certain characteristics an experiment ob- 
viously must have in order to accomplish any- 
thing at all. We might call these requisites of a 
good experiment, and we give as a partial listing 
of requisites: 

(1)  There must be a clearly defined objective. 

In addition to the factors, which are varied in 
a controlled fashion, the experimenter may be 
aware of certain background variables which 
might affect the outcome of the experiment. 
For one reason or another, these background 
variables will not be or cannot be included as 
factors in the experiment, but it is often possible 
to plan the experiment so that: 

(2) As far as possible, the effects of the 
factors should not be obscured by other vari- 
ables. 

(3) As far as possible, the results should not 
be influenced by conscious or unconscious bias 
in the experiment or on the part of the experi- 
menter. 

11-1 
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(4) The  experiment  should  provide  some 
measure of precision. * 

(5) The experiment must have sufficient pre- 
cision to accomplish its purpose. 

* This requisite can be relaxed in some situations, i.e., 
when there is a well-known history of the measurement 
process, and consequently good a priori estimates of 
precision. 

To aid in achieving these requisites, statistical 
design of experiments can provide some tools for 
sound experimentation, which are listed in Table 
11-1. 

The tools given include: experimental pattern, 
planned grouping, randomization, and replica- 
tion. Their functions in experimentation are 
shown in Table 11-1, and are amplified in Para- 
graphs 11-2 through 11-5. 

TABLE  11-1.    SOME REQUISITES AND TOOLS FOR SOUND EXPERIMENTATION 

Requisites Tools 

1.   The experiment should have carefully de- 
fined objectives. 

1. The definition of objectives requires all of 
the specialized subject-matter knowledge of 
the experimenter, and results in such things 
as: 
(a) Choice of factors, including their range; 
(b) Choice of experimental materials, pro- 

cedure, and equipment; 
(c) Knowledge  of  what  the  results  are 

applicable to. 

As far as possible, effects of factors should 
not be obscured by other variables. 

The use of an appropriate EXPERIMEN- 
TAL PATTERN** (see Par. 11-2) helps to 
free the comparisons of interest from the 
effects of uncontrolled variables, and sim- 
plifies the analysis of the results. 

As far as possible, the experiment should be 
free from bias (conscious or unconscious). 

Some variables may be taken into account 
by PLANNED GROUPING (see Par. 
11-3). For variables not so taken care of, 
use RANDOMIZATION (Par. 11-4). The 
use of REPLICATION aids RANDOM- 
IZATION to do a better job. 

Experiment should provide a measure of 
precision (experimental error). * 

REPLICATION (Par. 11-5) provides the 
measure of precision; RANDOMIZATION 
assures validity of the measure of precision. 

Precision of experiment should be sufficient 
to meet objectives set forth in requisite 1. 

Greater precision may be achieved by: 
Refinements of technique 
EXPERIMENTAL PATTERN (including 
PLANNED GROUPING) 
REPLICATION. 

* Except where there is a well-known history of the 
measurement process. 

** Capitalized words are discussed in the following 
paragraphs. 

11-2 
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11-2    EXPERIMENTAL PATTERN 

The term experimental pattern is a broad one 
by which we mean the planned schedule of 
taking the measurements. A particular pat- 
tern may or may not include the succeeding 
three tools (planned grouping, randomization, 
and replication). Each of these three tools can 
improve the experimental pattern in particular 
situations. The proper pattern for the experi- 
ment will aid in control of bias and in measure- 
ment of precision, will simplify the requisite 
calculations of the analysis, and will permit 

clear estimation of the effects of the factors. 

A common experimental pattern is the so- 
called factorial design experiment, wherein we 
control several factors and investigate their 
effects at each of two or more levels. If two 
levels of each factor are involved, the experi- 
mental plan consists of taking an observation at 
each of the 2n possible combinations. The fac- 
torial design, with examples, is discussed in 
greater detail in Chapter 12. 

11-3    PLANNED GROUPING 

An important class of experimental patterns 
is characterized by planned grouping. This 
class is often called block designs. The use of 
planned grouping (blocking) arose in compara- 
tive experiments in agricultural research, in 
recognition of the fact that plots that were close 
together in a field were usually more alike than 
plots that were far apart. In industrial and 
engineering research, the tool of planned group- 
ing can be used to take advantage of naturally 
homogeneous groupings in materials, machines, 
time, etc., and so to take account of "back- 
ground variables" which are not directly "fac- 
tors" in the experiment. 

Suppose we are required to compare the effect 
of five different treatments of a plastic material. 
Plastic properties vary considerably within a 
given sheet. To get a good comparision of the 
five treatment effects, we should divide the 
plastic sheet into more or less homogeneous 
areas, and subdivide each area into five parts. 
The five treatments could then be allocated to 
the five parts of a given area. Each set of five 
parts may be termed a block. In this case, had 
we had four or six treatments, we could as well 
have had blocks of four or six units. This is 
not  always  the  case — the  naturally  homo- 

geneous area (block) may not be large enough to 
accommodate all the treatments of interest. 

If we are interested in the wearing qualities of 
automobile tires, the natural block is a block of 
four, the four wheels of an automobile. Each 
automobile may travel over different terrain or 
have different drivers. However, the four tires 
on any given automobile will undergo much the 
same conditions, particularly if they are rotated 
frequently. 

In testing different types of plastic soles for 
shoes, the natural block consists of two units, 
the two feet of an individual. 

The block may consist of observations taken 
at nearly the same time or place. If a machine 
can test four items at one time, then each run 
may be regarded as a block of four units, each 
item being a unit. 

Statisticians have developed a variety of es- 
pecially advantageous configurations of block 
designs, named and classified by their structure 
into randomized blocks, Latin squares, incom- 
plete blocks, lattices, etc., with a number of sub- 
categories of each. Some of these block designs 
are discussed in detail in Chapter 13. 
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11-4    RANDOMIZATION 

Randomization is necessary to accomplish 
Requisites 3 and 4 in Table 11-1. In order to 
eliminate bias from the experiment (Requisite 
3), experimental variables which are not spe- 
cifically controlled as factors, or "blocked out" 
by planned grouping, should be randomized — 
e.g., the allocations of specimens to treatments 
or methods should be made by some mechanical 
method of randomization. 

Randomization also assures valid estimates of 
experimental error (Requisite 4), and makes pos- 
sible the application of statistical tests of sig- 
nificance and the construction of confidence 
intervals. 

There are many famous examples of experi- 
ments where failure to randomize at a crucial 
stage led to completely misleading results. As 
always, however, the coin has another side; the 
beneficial effects of randomization are obtained 
in the long run, and not in a single isolated 
experiment.    Randomization may be thought 

of as insurance, and, like insurance, may some- 
times be too expensive. If a variable is thought 
unlikely to have an effect, and if it is very diffi- 
cult to randomize with respect to the variable, 
we may choose not to randomize. 

In general, we should try to think of all vari- 
ables that could possibly affect the results, select 
as factors as many variables as can reasonably 
be studied, and use planned grouping where 
possible. Ideally, then, we randomize with 
respect to everything else — but it must be 
recognized that the ideal cannot' always be 
realized in practice. 

The word randomization has been used rather 
than randomness to emphasize the fact that 
experimental material rarely, if ever, has a ran- 
dom distribution in itself, that we are never 
really safe in assuming that it has, and that con- 
sequently randomness has to be assured by for- 
mal or mechanical randomization. 

11-5    REPLICATION 

In order to evaluate the effects of factors, a 
measure of precision (experimental error) must 
be available. In some kinds of experiments, 
notably in biological or agricultural research, 
this measure must be obtained from the experi- 
ment itself, since no other source would provide 
an appropriate measure. In some industrial 
and engineering experimentation, however, 
records may be available on a relatively stable 
measurement process, and this data may pro- 
vide an appropriate measure.    Where the meas- 

ure of precision must be obtained from the ex- 
periment itself, replication provides the meas- 
ure. In addition to providing the measure of 
precision, replication provides an opportunity 
for the effects of uncontrolled factors to balance 
out, and thus aids randomization as a bias- 
decreasing tool. (In successive replications, 
the randomization features must be independ- 
ent.) Replication will also help to spot gross 
errors in the measurements. 
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11-6    THE LANGUAGE OF EXPERIMENTAL DESIGN 

In discussing applications of statistical de- 
sign of experiments in the field of physical 
sciences and engineering, we are extremely 
handicapped by the classical language of experi- 
mental design. The early developments and 
applications were in the field of agriculture, 
where the terms used in describing the designs 
had real physical meaning. The experimental 
area was an area — a piece of ground. A block 
was a smaller piece of ground, small enough to 
be fairly uniform in soil and topography, and 
thus was expected to give results within a block 
that would be more alike than those from differ- 
ent blocks. A plot was an even smaller piece of 
ground, the basic unit of the design. As a unit, 
the plot was planted, fertilized, and harvested, 
and it could be split just by drawing a line. A 
treatment was actually a treatment (e.g., an 
application of fertilizer) and a treatment combi- 
nation was a combination of treatments. A 
yield was a yield, a quantity harvested and 
weighed or measured. 

language for a single book, we must use these 
terms, and we must ask the engineer or scientist 
to stretch his imagination to make the terms fit 
his experimental situation. 

Experimental area can be thought of as the 
scope of the planned experiment. For us, a 
block can be a group of results from a particular 
operator, or from a particular machine, or on a 
particular day — any planned natural grouping 
which should serve to make results from one 
block more alike than results from different 
blocks. For us, a treatment is the factor being 
investigated (material, environmental condi- 
tion, etc.) in a single factor experiment. In 
factorial experiments (where several variables 
are being investigated at the same time) we 
speak of a treatment combination and we mean 
the prescribed levels of the factors to be applied 
to an experimental unit. For us, a yield is a 
measured result and, happily enough, in chem- 
istry it will sometimes be a yield. 

Unfortunately for our purposes, these are the 
terms commonly used. Since there is no par- 
ticular future in inventing a new descriptive 

Many good books on experimental design are 
available. See the following list of References 
and Recommended Textbooks. 
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CHAPTER 12 

FACTORIAL EXPERIMENTS 

12-1     INTRODUCTION 

12-1.1     SOME GENERAL REMARKS AND 
TERMINOLOGY 

Factorial experiment is the name commonly 
applied to an experiment wherein we control 
several factors and investigate their effects at 
each of two or more levels. The experimental 
plan consists of taking an observation at each 
one of all possible combinations that can be 
formed for the different levels of the factors. 
Each such different combination is called a 
treatment combination. 

Suppose that we are interested in investigat- 
ing the effect of pressure and temperature on the 
yield of some chemical process. Pressure and 
temperature will be called the factors in the ex- 
periment. Each specific value of pressure to be 
included will be called a level of the pressure 
factor, and similarly each specific value of tem- 
perature to be included will be called a level of 
the temperature factor. In the past, one com- 
mon experimental approach has been the so- 
called "one at a time" approach. This kind of 
experiment would study the effect of varying 
pressure at some constant temperature, and 
then study the effect of varying temperature at 
some constant pressure. Factors would be var- 
ied "one at a time." The results of such an 
experiment are fragmentary in the sense that we 
have learned about the effect of different pres- 
sures at one temperature only (and the effect of 
different temperatures at one pressure only). 
The reaction of the process to different pressures 
may depend on the temperature used; if we had 
chosen a different temperature, our observed 
relation of yield to pressure may have been 
quite different. In statistical language, there 
may be an interaction effect between the two 

factors within the range of interest, and the 
"one at a time" procedure does not enable us to 
detect it. 

In a factorial experiment, the levels of each 
factor we wish to investigate are chosen, and a 
measurement is made for each possible combina- 
tion of levels of the factors. Suppose that we 
had chosen two levels, say 7cm. and 14cm. for 
pressure, and two levels, say, 70°F. and 100°F. 
for temperature. There would be four possible 
combinations of pressure and temperature, and 
the factorial experiment would consist of four 
trials. In our example, the term level is used in 
connection with quantitative factors, but the 
same term is also used when the factors are 
qualitative. 

In the analysis of factorial experiments, we 
speak of main effects and interaction effects (or 
simply interactions). Main effects of a given 
factor are always functions of the average re- 
sponse or yield at the various levels of the fac- 
tor. In the case where a factor has two levels, 
the main effect is the difference between the re- 
sponses at the two levels averaged over all levels 
of the other factors. In the case where the fac- 
tor has more than two levels, there are several 
independent components of the main effect, the 
number of components being one less than the 
number of levels. If the difference in the re- 
sponse between two levels of factor A is the 
same regardless of the level of factor B (except 
for experimental error), we say that there is no 
interaction between A and B, or that the AB 
interaction is zero. Figure 12-1 shows two ex- 
amples of response or yield curves; one example 
shows the presence of an interaction, and the 
other shows no interaction.    If we have two 
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RESPONSE 

I 

LEVEL OF FACTOR A 

Effect of different 
levels of A on the 
response for three 
different levels of 
B — interaction 
present. 

RESPONSE 

Effect of different 
levels of A on the 
response for two 
different levels of 
C — no interaction 
present. 

LEVEL OF FACTOR A 

Figure 12-1.    Examples of response curves showing presence or absence of interaction. 

levels of each of the factors A and B, then the 
AB interaction (neglecting experimental error) 
is the difference in the yields of A at the second 
level of B minus the difference in the yields of A 
at the first level of B. If we have more than 
two levels of either or of both A and B, then the 
AB interaction is composed of more than one 
component. If we have a levels of the factor A 
and b levels of the factor B, then the AB inter- 

action has  {a — 1)(6 — 1)  independent com- 
ponents. 

For factorial experiments with three or more 
factors, interactions can be denned similarly. 
For instance, the ABC interaction is the inter- 
action between the factor C and the AB inter- 
action (or equivalently between the factor B 
and the AC interaction, or A and the BC inter- 
action). 
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12-1.2    ESTIMATES OF EXPERIMENTAL ERROR 
FOR FACTORIAL-TYPE  DESIGNS 

12-1.2.1     Internal Estimates of Error.       As   in 
any experiment, we must have a measure of ex- 
perimental error to use in judging the signifi- 
cance of the observed differences in treatments. 
In the larger factorial designs, estimates of 
higher-order interactions will be available. The 
usual assumption is that high-order interactions 
are physically impossible, and that the esti- 
mates so labelled are actually estimates of ex- 
perimental error. As a working rule we often 
use third- and higher-order interactions for 
error. This does not imply that third-order 
interactions are always nonexistent. The judg- 
ment of the experimenter will determine which 
interactions may reasonably be assumed to be 
meaningful, and which may be assumed to be 
nothing more than error. These latter inter- 
actions may be combined to provide an internal 
estimate of error for a factorial experiment of 
reasonable size. For very small factorials, e.g., 
23 or smaller, there are no estimates of high- 
order interactions, and the experiment must be 
replicated (repeated) in order to obtain an esti- 
mate of error from the experiment itself. 

In the blocked factorial designs (Paragraph 
12-3 and Table 12-3), some of the higher-order 
interactions will be confounded with blocks, and 
will not be available as estimates of error (see 
Paragraph 12-3.1). For example, note the plan 
in Table 12-3 for a 23 factorial arranged in two 
blocks of four observations. The single third- 
order interaction provides the blocking, i.e., the 
means of subdividing the experiment into homo- 
geneous  groups,  and  therefore  will  estimate 

block effects, not error. Here again it may be 
necessary to replicate the experiment in order to 
have an estimate of experimental error. 

In the case of fractional factorials, there is 
obviously no point in replication of the experi- 
ment; further experimentation would probably 
be aimed at completing the full factorial or a 
larger fraction of the full factorial. The smaller 
fractional factorial designs (Paragraph 12-4 and 
Table 12-4) do not contain high-order interac- 
tions that can suitably be assumed to be error. 
In fact, none of the particular plans given in 
Table 12-4 provides a suitable internal estimate 
of error. Accordingly then, an independent 
estimate of error will be required when using a 
small fractional factorial. Occasionally and 
cautiously we might use second-order interac- 
tion effects to test main effects, if the purpose of 
the experiment were to look for very large main 
effects (much larger than second-order effects). 
In using interactions as estimates of error, how- 
ever, we must decide before conducting the ex- 
periment (or at least before having a knowledge 
of the responses or yields) which of the effects 
may be assumed to be zero, so that they may be 
used in the estimate of the variation due to 
experimental error. 

12-1.2.2 Estimates of Error From Past Expe- 
rience. In the cases discussed in Para- 
graph 12-1.2.1 that do not provide adequate 
estimates of error from the experiment itself, we 
must depend on an estimate based upon past 
experience with the measurement process. In 
laboratory and industrial situations, this infor- 
mation is often at hand or can be found by 
simple analysis of previously recorded data. 

12-2    FACTORIAL EXPERIMENTS (EACH  FACTOR AT TWO LEVELS) 

12-2.1     SYMBOLS 

A factorial experiment in which we have n 
factors, each at two levels, is known as a 2" 
factorial experiment. The experiment consists 
of 2" trials, one at each combination of levels of 
the factors. To identify each of the trials, we 
adopt a conventional notation.    A factor is 

identified by a capital letter, and the two levels 
of a factor by the subscripts zero and one. If 
we have three factors A, B, and C, then the 
corresponding levels of the factors are A0, Ai; 
Bo, Bi; and Co, C\; respectively. By conven- 
tion, the zero subscript refers to the lower level, 
to the normal condition, or to the absence of a 
condition, as appropriate.   A trial is represented 
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by a combination of small letters denoting the 
levels of the factors in the trial. The presence 
of a small letter means that the factor is at the 
level denoted by the subscript 1 (the higher level 
for quantitative factors); the absence of a letter 
means that the factor is at the level denoted by 
the subscript zero (the lower level for quantita- 
tive factors). Thus, the symbol a represents 
the treatment combination where A is at the 
level Ai, B is at B0, and C is at C0. The sym- 
bol be represents the treatment combination 
where A is at the level An, B is at Bt, and C is 
at Ci. Conventionally, the symbol (1) repre- 
sents the treatment combination with each fac- 
tor at its zero level. In an experiment with 
three factors, each at two levels, the 23 = 8 
combinations, and thus the eight trials, are 
represented by (1), a, b, ab, c, ac, be, abc. 

The experiment has four factors, each at two 
levels, i.e., is a 24 factorial. Note that all fac- 
tors are qualitative in this experiment. The 
experimental factors and levels are: 

FACTORS LEVELS 

A — Fabric An — Sateen 
A i — Monks cloth 

B — Treatment Bo — Treatment x 
Bi — Treatment y 

C — Laundering 
condition 

Co — Before laundering 
d — After one laundering 

D — Direction of 
test 

Do — Warp 
Di —Fill 

Data Sample 12-2 — Flame Tests of Fire- 
Retardant Treatments 

The data are taken from a larger experiment 
designed to evaluate the effect of laundering on 
certain fire-retardant  treatments for fabrics. 

The observations reported in Table 12-1 are 
inches burned, measured on a standard size 
sample after a flame test. For reference, the 
conventional symbol representing the treatment 
combination appears beside the resulting ob- 
servation. 

TABLE  12-1.     RESULTS OF FLAME TESTS OF FIRE-RETARDANT TREATMENTS 
(FACTORIAL EXPERIMENT OF DATA SAMPLE  12-2) 

/ 0 A, 

Bo ßl Bo B1 

c„ 
Do 4.2     ■ (1) 4.5 b 3.1 a 2.9 ab 

^■o 

Di 4.0 d 5.0 bd 3.0 ad 2.5 abd 

c 
D„ 3.9 c 4.6 be 2.8 ac 3.2 abc 

*-l 

Di 4.0 cd 5.0 bed 2.5 acd 2.3 abed 
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12-2.2    ANALYSIS 

12-2.2.1 Estimation of Main Effects and Interactions. Yates' method is a systematic method for 
obtaining estimates of main effects and interactions for two-level factorials. The method was 
originally described by Yates(I), and may be found in various textbooks (Cochran and Cox(2) and 
Davies(3))- The method as given here applies to factorials, blocked factorials (Paragraph 12-3), and 
fractional factorials (Paragraph 12-4), for which we have 2n observations.* The first step in the 
Yates' procedure is to make a table with n + 2 columns, where n is the number of factors in the 
factorial experiment. For example, see Table 12-2, where n + 2 = 6. In Table 12-2, the treat- 
ment combinations are listed in a standardized order in the first column, and after' following the 
prescribed procedure, estimated main effects and interactions result in the last column (column 
n + 2). The order in which the treatment combinations are listed in column 1 determines the order 
of estimated effects in column n + 2. 

For factorials or blocked factorials, the treatment combinations should be listed in "standard 
order" in the first column, i.e., 

For two factors:     (1), a, b, ab 
For three factors:   (1), a, b, ab, c, ac, be, abc 
For four factors:     (1), a, b, ab, c, ac, be, abc, d, ad, bd, abd, cd, acd, bed, abed 

etc. 

"Standard order" for five factors is obtained by listing all the treatment combinations given for 
four factors, followed by e, ae, be, abe, . . . , abede (i.e., the new element multiplied by all previous 
treatment combinations). Standard order for a higher number of factors is obtained in similar 
fashion, beginning with the series for the next smaller number of factors, and continuing by multi- 
plying that series by the new element introduced. 

The estimated main effects and interactions also appear in a standard order: 

For two factors:     T, A, B, AB 
For three factors:   T, A, B, AB, C, AC, BC, ABC 

etc. 

where T corresponds to the overall average effect, A to the main effect of factor A, AB to the 
interaction of factors A and B, etc. 

For fractional factorials, the treatment combinations in column 1 should be listed in the order 
given in the plans of Table 12-4. The order of the estimated effects is also given in Table 12-4. 
For fractional factorial plans other than those given in Table 12-4, see Davies(3) for the necessary 
ordering for the Yates method of analysis. 

In a =^ fraction of a 2" factorial, there are 2n' observations, where n' = n — b (See Par. 12-4). 
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The systematic procedure for Yates' method is as follows: 

Procedure Example 

(1) Make a table with n + 2 columns. In the 
first column, list the treatment combina- 
tions in standard order. 

(1) Use Data Sample 12-2, the results of which 
are summarized in Table 12-1. This is a 24 

factorial (n = 4). Therefore, our Table 
will have six columns, as shown in Table 
12-2. 

(2) In column 2, enter the observed yield or 
response corresponding to each treatment 
combination listed in column 1. 

(2)   See Table 12-2. 

(3) In the top half of column 3, enter, in order, 
the sums of consecutive pairs of entries in 
column 2. In the bottom half of the col- 
umn enter, in order, the differences between 
the same consecutive pairs of entries, i.e., 
second entry minus first entry, fourth entry 
minus third entry, etc. 

(3)   See Table 12-2.   For example: 

4.2 + 3.1 = 7.3 
4.5 + 2.9 = 7.4 
3.9 + 2.8 = 6.7 
etc., 
and, 
3.1 - 4.2 = -1.1 
2.9 -4.5 = -1.6 
2.8 - 3.9 = -1.1 
etc. 

(4) Obtain columns 4, 5, . . ., n + 2, in the 
same manner as column 3, i.e., by obtaining 
in each case the sums and differences of the 
pairs in the preceding column in the man- 
ner described in step 3. 

(4)   See Table 12-2. 

(5) The entries in the last column (column 
n + 2) are called gT, gA, gB, gAii, etc., cor- 
responding to the ordered effects T, A, 
B, AB, etc. Estimates of main effects 
and interactions are obtained by dividing 
the appropriate g by 2n_1. gT divided by 
2"-' is the overall mean. 

Note: The remaining Steps of this procedure 
are checks on the computation. 

(5)   In Table 12-2, 

gA = -12.9; 

the estimated main effect of 

A = -12.9/8 
= -1.6. 

gAD = -2.5; 

the estimated effect of AD interaction 

= -2.5/8 
= -0.3, 

etc. 

Note: The following Steps are checks on the 
computations in Table 12-2. 
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Procedure Example 

(6) The sum of all the 2n individual responses 
(column 2) should equal the total given in 
the first entry of the last column (column 
n + 2). 

(6)   The sum of column 2 should equal gT, 
57.5 = 57.5 

(7) The sum of the squares of the individual 
responses (column 2) should equal the sum 
of the squares of the entries in the last 
column (column n + 2) divided by 2". 

(7) The sum of squares of entries in column 2 
should equal the sum of squares of the 
entries in the last column, divided by 24 

(= 16), 

219.15 = 3506.40 
= 219.15 

16 

(8) For any main effect, the entry in the last 
column (column n + 2) equals the sum of 
the responses in which that factor is at its 
higher level minus the sum of the responses 
in which that factor is at its lower level. 

(8)   9A = (a + ab + ac + abc + ad + abd 
+ acd + abed) 
- ((1) +b + c + bc + d + bd 
+ cd + bed) 

= (22.3) - (35.2) 
= -12.9 

9B = (b + ab + be + abc + bd + abd 
+ bed + abed) 
— ((1) +a + c + ac-\-d + ad 
+ cd + acd) 

= (30.0) - (27.5) 
= 2.5 

9c = (c + ac + be + abc + cd + acd 
+ bed + abed) 
-((1) +a + b + ab + d + ad 
+ bd + abd) 

= (28.3) - (29.2) 
= -0.9 

9 D = (d + ad + bd + abd + cd + acd 
+ bed + a&crf) 
- ((1) +a + b + ab + c + ac 
+ be + aöc) 

= (28.3) - (29.2) 
= -0.9 
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TABLE  12-2.    YATES' METHOD OF ANALYSIS USING DATA SAMPLE  12-2 

! 2 3 4 5 6 
Treatment Response 

Combination (Yield) 9 

(1) 4.2 7.3 14.7 29.2 57.5 = gT 

a 3.1 7.4 14.5 28.3 — 12.9 = gA     , an est mate of SA 
b 4.5 6.7 14.5 -5.2 2.5 = gB 85 

ab 2.9 7.8 13.8 -7.7 - 3.5 = gAB SAB 
c 3.9 7.0 -2.7 1.2 - 0.9 = gc SC 

ac 2.8 7.5 -2.5 1.3 - 0.5 = gAc SAC 
be 4.6 6.5 -3.5 -0.8 1.3 = gBC SBC 

abc 3.2 7.3 -4.2 -2.7 0.5 = gAHC SABC 
d 4.0 -1.1 0.1 -0.2 - 0.9 = gD 8D 

ad 2.0 -1.6- 1.1 -0.7 — 2.5 = gAD SAD 
bd 5.0 -1.1 0.5 0.2 0.1 = gBD SBD 

aba 2.5 . -1.4 C.8 -0.7 -  1.9 = gARD SABD 
cd 4.0 -1.0 -0.5 1.0 - 0.5 = gCD SCD 

acd 2.5 -2.5 -0.3 o.s -  0.9 = gAcD SACD 
bed 5.0 -1.5 -1.5 0.2 -  0.7 = gucD SBCD 

abed 2.3 -2.7 -1.2 0.3 0.1  = g,\nCD 8A BCD 

Total 57.5 

Sum of 
Squares 219.15 3506.40 

T 2-2.2.2    Testing for Significance of Main Effects and Interactions.    Before using this procedure, 
read Paragraph 12-1.2 and perform the computation described in Paragraph 12-2.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If there is no available estimate of the vari- 
ation due to experimental error,* find the 
sum of squares of the g's corresponding to 
interactions of three or more factors in 
Table 12-2. 

Example 

(1) Let a = .05 

(2) Using Table 12-2, 

2 I 2 i ** I 2 i 2 
QABC T- gABD ~r gico T $BCD ~r gABCD 

= 5.17 

(3) To obtain s2, divide the sum of squares ob- 
tained in Step 2 by 2"v, where v is the num- 
ber of interactions included. In a 2" 
factorial, the number of third and higher 
interactions will be 2" — (n2 + n + 2)/2. 
If an independent estimate of the variation 
due to experimental error is available, use 
this s2. 

(3) n = 4 
v = 5 

2'v = 16 (5) 
= 80 

s2 = 5.17/80 
= .0646 

s = .254 

See Paragraph 12-1.2. 
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Procedure 

(4) Look up ii_„/2 for v degrees of freedom in 
Table A-4. 
If higher order interactions are used to ob- 
tain s2, i' is the number of interactions 
included. 
If an independent estimate of s2 is used, v is 
the degrees of freedom associated with this 
estimate. 

(5) Compute 

w = (2")i<i_n/2s 

(6) For any main effect or interaction X, if the 
absolute value of gx is greater than w, con- 
clude that X is different from zero, e.g., if 

| gA | > w, conclude that the A effect is dif- 
ferent from zero. Otherwise, there is no 
reason to believe that X is different from 
zero. 

Example 

(4)   £.975 for 5 d.f. = 2.571 

(5) 

w = 4 (2.571) (0.254) 
= 2.61 

(6) See Table 12-2. |gA | = 12.9, and \gAB\ = 
3.5 are greater than w; therefore, the main 
effect of A and the interaction AB are 
believed to be significant. 

12-3    FACTORIAL EXPERIMENTS WHEN UNIFORM CONDITIONS CANNOT BE 
MAINTAINED THROUGHOUT THE EXPERIMENT 

(EACH FACTOR AT TWO LEVELS) 

12-3.1     SOME EXPERIMENTAL ARRANGEMENTS 

When the number of factors to be investigated are more than just a few, it may be that the 
required number of trials 2" is too large to be carried out under reasonably uniform conditions — 
e.g., on one batch of raw material, or on one piece of equipment. In such cases, the design can be 
arranged in groups or blocks so that conditions affecting each block can be made as uniform as 
possible. The use of planned grouping within a factorial design (i.e., a blocked factorial) will im- 
prove the precision of estimation of experimental error, and will enable us to estimate the main 
effects free of block differences; but, the structure of the designs is such that certain interaction 
effects will be inextricable from block effects. In most designs, however, only three-factor and 
higher-order interactions will be confused ("confounded") with blocks. 

Some experimental arrangements of this kind are given in Table 12-3, and their analysis and 
interpretation are given in Paragraph 12-3.2. 

Blocked factorial designs have not been very widely used in experimentation in the physical 
sciences, and the presumption is that they are usually not the most suitable designs for the kinds 
of non-homogeneity that occur in these applications. (See Chapter 13 for other designs which 
make use of blocking.) For this reason, no numerical example is given in this Paragraph. This 
Paragraph is included for completeness, and serves to link the full factorials (Paragraph 12-2) and 
the fractional factorials (Paragraph 12-4). 

12-9 



AMCP 706-112 PLANNING AND ANALYSIS OF EXPERIMENTS 

TABLE  12-3.    SOME BLOCKED FACTORIAL PLANS 
(FOR USE WHEN FACTORIAL EXPERIMENT MUST BE SUB-DIVIDED INTO HOMOGENEOUS GROUPS) 

Plans for Three Factors:   23 = 8 Observations 

(i)    Four observations per block (ABC confounded with block effects). 

Block 1       (1), ab, ac, be 

Block 2      a, b, c, abc 

Plans for Four Factors:   24 = 16 Observations 

(i)    Eight observations per block (ABCD interaction confounded with block effects). 

Block 1      (1), ab, ac, be, ad, bd, cd, abed 

Block 2      a, b, c, abc, d, abd, acd, bed 

(ii)    Four observations per block (AD, ABC, BCD, confounded with block effects). 

Block 1       (1), be, abd, acd 

Block 2      a, abc, bd, cd 

Block 3      b, c, ad, abed 

Block 4      d, bed, ab, ac 

Plans for Five Factors:   25 = 32 Observations 

(i)    Sixteen observations per block (ABCDE interaction confounded with block effects). 

Block 1       (l), ab, ac, be, ad, bd, cd, abed, ae, be, ce, abee, de, abde, acde, bede 

Block 2      a, b, c, abc, d, abd, acd, bed, e, abe, ace, bee, ade, bde, cde, abede 

(ii)    Eight observations per block (BCE, ADE, ABCD, confounded with block effects). 

Block 1      (1), ad, be, abed, abe, bde, ace, cde 

Block 2      a, d, abc, bed, be, abde, ce, acde 

Block 3      b, abd, c, acd, ae, de, abce, bede 

Block 4      e, ade, bee, abede, ab, bd, ac, cd 

(iii)    Four observations per block (AD, BE, ABC, BCD, CDE, ACE, ABDE, confounded with 
block effects). 

Block 1 (1), bee, acd, abde 

Block 2 a, abce, cd, bde 

Block 3 b, ce, abed, ade 

Block 4 c, be, ad, abede 

Block 5 d, bede, ac, abe 

Block 6 e, be, acde, abd 

Block 7 ab, ace, bed, de 

Block 8 ae, abc, cde, bd 
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TABLE  12-3.     SOME BLOCKED FACTORIAL PLANS (Continued) 

Plans for Six Factors:   26 = 64 Observations 

(i)    Thirty-two observations per block (ABCDEF confounded with block effects). 
Block 1       (1), abcdef, plus all treatment combinations represented by two letters (e.g., ab, ac, 

etc.) and by four letters (e.g., abed, bede, etc.) 
Block 2      All treatment combinations represented by a single letter, by three letters, and by 

five letters. 

(ii)    Sixteen observations per block (ABCD, BCEF, ADEF, confounded with block effects). 
Block 1      (1), be, ad, abed, ef, beef, adef, abcdef, bde, cde, abe, ace, bdf, cdf, abf, acf 

Block 2      a, abe, d, bed, aef, abcef, def, bedef, abde, acde, be, ce, abdf, aedf, bf, cf 

Block 3      b, c, abd, acd, bef, cef, abdef, aedef, de, bede, ae, abce, df, bed/, af, abef 

Block 4      e, bee, ade, abede, f, bef, adf, abedf, bd, cd, ab, ac, bdef, cdef, abef, acef 

(iii)    Eight observations per block (ADE, BCE, ACF, BDF, ABCD, ABEF, CDEF, confounded 
with block effects). 
Block 1 (1), ace, bde, abed, adf, cdef, abef, bef 

Block 2 a, ce, abde, bed, df, acdef, bef, abef 

Block 3 b, abce, de, acd, abdf, bedef, aef, cf 

Block 4 c, ae, bede, abd, aedf, def, abcef, bf 

Block 5 d, acde, be, abe, af, cef, abdef, bedf 

Block 6 e, ac, bd, abede, adef, cdf, abf, beef 

Block 7 /, acef, bdef, abedf, ad, cde, abe, be 

Block 8      ab, bee, ade, cd, bdf, abcdef, ef, acf 

(iv)    Four observations per block (AD, BE, CF, ABC, BCD, CDE, DEF, ACE, AEF, ABF, BDF, 
ABDE, BCEF, ACDF, ABCDEF, confounded with block effects). 
Block 1 (1), beef, aedf, abde 

Block 2 a, abcef, cdf, bde 

Block 3 b, cef, abedf, ade 

Block 4 c, bef, adf, abede 

Block 5 d, bedef, acf, abe 

Block 6 e, bef, acdef, abd 

Block 7 /, bee, acd, abdef 

Block 8 ab, acef, bedf, de 

Block 9 ac, abef, df, bede 

Block 10 ad, abcdef, cf, be 

Block 11 ae, abef, cdef, bd 
Block 12 af, abce, cd, bdef 
Block 13 be, ef, abdf, acde 
Block 14 bf, ce, abed, adef 
Block 15 abe, aef, bdf, cde 
Block 16 abf, ace, bed, def 
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TABLE  12-3.     SOME BLOCKED FACTORIAL PLANS (Continued) 

Plans for Seven Factors:   27 = 128 Observations 

(i)   Sixty-four observations per block (ABCDEFG confounded with block effects). 
Block 1      (1), and all treatment combinations represented by two letters, four letters, or 

six letters (e.g., ab, abed, etc.). 
Block 2      All treatment combinations represented by a single letter, by three letters, and 

by five letters, plus abedefg. 

(ii)    Thirty-two observations per block (ABCD, ABEFG, CDEFG, confounded with block effects). 
,   Block 1       (1), ab, abed, ace, acf, acg, ade, adf, adg, bee, bef, cdef, cdeg, cdfg, abedef, abedeg, 

abedfg, abef, beg, bde, bdf, bdg, abeg, abfg, cd, ef, eg, fg, acefg, adefg, bcefg, bdefg 

Block 2      a, b, bed, ce, cf, eg, de, df, dg, abce, abef, acdef, acdeg, aedfg, bedef, bedeg, bedfg, bef, 
abeg, abde, abdf, abdg, beg, bfg, acd, aef, aeg, afg, cefg, defg, abcefg, abdefg 

Block 3      c, abc, abd, ae, af, ag, acde, aedf, aedg, be, bf, def, deg, dfg, abdef, abdeg, abdfg, abcef, 
bg, bede, bedf, bedg, abceg, abefg, d, cef, cfg, aefg, acdefg, befg, bedefg, ceg 

Block 4      e, abe, abede, ac, acef, aceg, ad, adef, adeg, be, beef, cdf, edg, cdefg, abedf, abedg, 
abedefg, abf, bceg, bd, bdef, bdeg, abg, abefg, cde, f, g, efg, aefg, adfg, befg, bdfg 

(iii)   Sixteen observations per block {ABCD, BCEF, ADEF, ACFG, BDFG, ABEG, CDEG, con- 
founded with block effects). 
Block 1 (1), bde, adg, abeg, beg, cdeg, abed, ace, efg, bdfg, adef, abf, beef, cdf, abedefg, aefg 

Block 2 a, abde, dg, beg, abeg, acdeg, bed, ce, aefg, abdfg, def, bf, abcef, aedf, bedefg, cfg 

Block 3 b, de, abdg, aeg, eg, bedeg, acd, abce, befg, dfg, abdef, af, cef, bedf, acdefg, abefg 

Block 4 c, bede, aedg, abceg, bg, deg, abd, ae, cefg, bedfg, acdef, abef, bef, df, abdefg, afg 

Block 5 d, be, ag, abdeg, bedg, ceg, abc, acde, defg, bfg, aef, abdf, bedef, cf, abcefg, aedfg 

Block 6 e, bd, adeg, abg, bceg, edg, abede, ac, fg, bdefg, adf, abef, bef, cdef, abedfg, acefg 

Block 7 /, bdef, adfg, abefg, befg, cdefg, abedf, acef, eg, bdg, ade, ab, bee, cd, abedeg, acg 

Block 8      g, bdeg, ad, abe, be, cde, abedg, aceg, ef, bdf, adefg, abfg, bcefg, cdfg, abedef, acf 

(iv)    Eight observations per block (ACF, ADE, BCE, BDF, CDG, ABG, EFG, ABEF, CDEF, 
ABCD, BDEG, ACEG, ADFG, BCFG, ABCDEFG, confounded with block effects). 
Block 1 (1), aceg, bdeg, abed, adfg, cdef, abef, befg 
Block 2 a, ceg, abdeg, bed, dfg, acdef, bef, abefg 

Block 3 b, abceg, deg, acd, abdfg, bedef, aef, cfg 

Block 4 c, aeg, bedeg, abd, aedfg, def, abcef, bfg 

Block 5 d, acdeg, beg, abc, afg, cef, abdef, bedfg 

Block 6 e, acg, bdg, abede, adefg, cdf, abf, bcefg 

Block 7 /, acefg, bdefg, abedf, adg, cde, abe, beg 

Block 8 g, ace, bde, abedg, adf, cdefg, abefg, bef 

Block 9 ab, bceg, adeg, cd, bdfg, abedef, ef, aefg 
Block 10 ac, eg, abedeg, bd, cdfg, adef, beef, abfg 
Block 11 ad, cdeg, abeg, be, fg, acef, bdef, abedfg 
Block 12 ae, eg, abdg, bede, defg, aedf, bf, abcefg 
Block 13 af, cefg, abdefg, bedf, dg, acde, be, abeg 
Block 14 ag, ce, abde, bedg, df, acdefg, befg, abef 
Block 15 bg, abce, de, aedg, abdf, bedefg, aefg, cf 
Block 16 abg, bee, ade, edg, bdf, abedefg, efg, acf 
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12-3.2    ANALYSIS  OF  BLOCKED   FACTORIAL  EXPERIMENTS  WHEN  EACH  FACTOR   IS  AT 
TWO  LEVELS 

12-3.2.1 Estimation of Main Effects and Interactions. The procedure of Paragraph 12-2.2.1 
(Yates' method) should be used. Remember that certain of the interactions are confounded with 
block effects. 

12-3.2.2    Testing for Significance of Main Effects and Interactions.    Before using this procedure, 
read Paragraph 12-1.2, and perform the computations described in Paragraph 12-2.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If there is no estimate of the variation due to experimental error available*, find the sum of 
squares of the g's corresponding to interactions of three or more factors in the Yates' Table 
(omitting those interactions that are confounded with blocks). 

(3) To obtain s2, divide the sum of squares obtained in Step 2 by 2nv, where v is the number of 
interactions included. If an independent estimate of the variation due to experimental error 
is available, use this s2. 

(4) Look up ti-a/2 for v degrees of freedom in Table A-4. 
If higher order interactions are used to obtain s2, v is the number of interactions included. 
If an independent estimate of s2 is used, v is the degrees of freedom associated with this estimate. 

(5) Compute 

w = (2n)H1-a/2 s 

(6) For any main effect or interaction X, if | gx \ > w, conclude that X is different from zero, e.g., 
if [ gA | > w, conclude that the A effect is different from zero. Otherwise, there is no reason 
to believe that X is different from zero. 

See Paragraph 12-1.2. 
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12-4    FRACTIONAL FACTORIAL EXPERIMENTS (EACH FACTOR 
AT TWO LEVELS) 

12-4.1    THE FRACTIONAL FACTORIAL DESIGNS 

If there are many factors, a complete factorial experiment (Paragraph 12-2), requiring all possible 
combinations of levels of the factors, involves a large number of tests. This is true even when 
only two levels of each factor are being investigated. ■ In such cases, the complete factorial experi- 
ment may overtax the available facilities. In other situations, it may not be practical to plan 
the entire experimental program in advance, and we may wish to conduct a few smaller experi- 
ments to serve as a guide to future work. It is possible that the complete set of experiments may 
furnish more information or precision than is needed for the purpose in hand. 

In these cases, it is useful to have a plan that requires fewer tests than the complete factorial 
experiment. Recent developments in statistics have considered the problem of planning multi- 
factor experiments that require measuring only a fraction of the total number of possible combina- 
tions. The fraction is a carefully prescribed subset of all possible combinations; its analysis is 
relatively straightforward; and the use of a fractional factorial does not preclude the possibility 
of later completion of the full factorial experiment. 

In Figures 12-2,12-3, and 12-4, let the letters A,B ,C, D,E ,F, and G, stand for seven factors to 
be investigated, and let the subscripts zero and one denote two alternative levels of each factor. 
The 128.(= 27) possible experimental conditions are represented by the 128 cells of Figure 12-2. 
The shaded squares represent those experimental combinations to be investigated if the experi- 
menter wishes to measure only half the 128 possible combinations. In the same way, the shaded 
cells in Figures 12-3 and 12-4 illustrate plans requiring only 32 and 16 measurements, respectively, 
instead of the full set of 128. 

Fractional factorial experiments obviously cannot produce as much information as the full 
factorial. Economy is achieved at the expense of assuming that certain of the interactions between 
factors are negligible. Some of the larger fractions (e.g., the half-replicate shown in Figure 12-2) 
require only that third-order (and higher) interactions be assumed negligible, and this assumption 
is not uncommon. However, the plan calling for one-eighth of the possible combinations, as 
shown in Figure 12-4, can only be used for evaluating the main effects of each of the seven factors, 
and will not allow the evaluation of any two-factor interactions. 

In a complete factorial experiment we have 2" tests. In the analysis of a complete factorial, 
we have n main effects, 2n— n — 1 interaction effects, and an overall average effect.    The 2" 

tests can be used to give independent estimates of the 2" effects.   In a fractional factorial ( say the 

fraction ~ J there will be only 2n~b tests and, therefore, 2"-b independent estimates.    In designing 

the fractional plans (i.e., in selecting an optimum subset of the 2" total combinations), the goal is 
to keep each of the 2n~b estimates as "clean" as possible — i.e., to keep the estimates of main 
effects and if possible second-order interactions free of confusion with each other. 

If we plan to test whether or not certain of the effects are significant, we must have an estimate 
of the variation due to experimental error which is independent of our estimates of the effects. 
See Paragraph 12-1.2. 
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Table 12-4 gives a number of useful two-level fractional factorial plans, together with the effects 
that can be estimated (assuming three-factor and higher-order interaction terms are negligible). 
The treatment combinations should be randomly allocated to the experimental material. More 
two-level plans may be found in reference (4), and fractional factorial plans for factors at three 
levels may be found in reference (5). 

TABLE  12-4.    SOME FRACTIONAL FACTORIAL PLANS 

Treatment Estimated 
Plans Combinations f Effects! 

Plan 1: (1) T 
Three factors (n = 3) ac A - BC 
y2 replication (b = 1) be B - AC 
4 observations ab -C + AB 

Plan 2: (1) T 
Four factors (n = 4) ad A 
Y2 replication (b = 1) bd B 
8 observations ab AB + CD 

cd C 
ac AC + BD 
be BC + AD 
abed D 

Plan 3: (1) T 
Five factors (n = 5) ae A 
Y2 replication (b = 1) be B 
16 observations ab AB 

ce C 
ac AC 
be BC 
abce -DE 
de D 
ad AD 
bd BD 
abde -CE 
cd CD 
acde -BE 
bede -AE 
abed -E 

t The order given is the order in which the data are to be iisted in the first column of the Yates method of analysis 
(see Pars. 12-2.2.1 and 12-4.2.1). 

$ The order given is the order in which estimated effects come out in the last column of the Yates method of analysis. 
See Pars. 12-2.2.1 and 12-4.2.1. 

12-16 



FRACTIONAL FACTORIALS AMCP 706-112 

TABLE  12-4.    SOME FRACTIONAL FACTORIAL PLANS (Continued) 

Treatment Estimated 
Plans Combinations! EffectsJ 

Plan 4: (1) T 
Five factors in = 5) ad A - DE 
x/i replication (b = 2) bde B -CE 
8 observations abe AB +CD 

cde C - BE 
ace AC + BD 
be -E + BC + AD 
abed D - AE 

Plan 5: 
Six factors (n = 6) 
34 replication (b = 2) 
16 observations 

(1) 
ae 
bef 
abf 
cef 
acf 
be 
abce 
df 
adef 
bde 
abd 
cde 
acd 
bedf 
abedef 

T 
A 
B 
AB + CE 
C 
AC + BE 
BC + AE + DF 
E 
D 
AD + EF 
BD + CF 
* 
CD + BF 
* 
F 
AF + DE 

an 6: (1) 
Six factors (n = 6) adf 
Y% replication (b = 3) bde 
8 observations abef 

cdef 
ace 
bef 
abed 

T 
A - DE -CF 
B -CE - DF 
AB +CD + EF 
C - AF - BE 

-F + AC + BD 
-E + AD + BC 
D - AE - BF 

11 See footnote on page 12-16. 

* To be used in our estimate of the variation due to experimental error. 
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TABLE  12-4.    SOME FRACTIONAL FACTORIAL PLANS (Continued) 

Treatment Estimated 
Plans Combinations! Effects} 

Plan 7: (1) T 
Seven factors (n = 7) aeg A 
Yg replication (b = 3) befg B 
16 observations abf AB + CE + DG 

cef C 
acfg AC + BE + FG 
beg BC + AE + DF 
abce E 
dfg D 
adef AD + EF + BG 
bde BD + CF + AG 
abdg G 
cdeg CD + BF + EG 
acd * 

bedf F 
abedefg AF + DE + CG 

Plan 8: (1) T 
Eight factors (n = 8) aegh A 
Mt, replication (b = 4) be/9 B 
16 observations abfh AB + CE + DG + FH 

cefh C 
acfg AC + BE + FG + DH 
begh BC + AE + DF + GH 
abce E 
dfgh D 
adef AD + EF + BG + CH 
bdeh BD + AG + CF + EH 
abdg G 
cdeg CD + AH + BF + EG 
acdh H 
bedf F 
abedefgh AF + DE + CG + BH 

t t * See footnotes, pages 12-16 and 12-17. 
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Dafa Sample 12-4—Flame Tests of Fire-Retardant Treatments 

Using Data Sample 12-2, we assume that a fractional factorial design had been used, instead of 
the full factorial. From Table 12-4, we use plan 2, a one-half replicate of four factors (n = 4, 
6 = 1).    The plan is reproduced as follows: 

TREATMENT 
COMBINATIONS 

(1) 

ad 

bd 

ab 

cd 

ac 

be 

abed 

The resulting data are shown in Table 12-5. 

ESTIMATED 
EFFECTS 

T 

A 

B 

AB +CD 

C 

AC + BD 

BC + AD 

D 

TABLE  12-5.     RESULTS OF FLAME TESTS OF FIRE-RETARDANT TREATMENTS 
(FRACTIONAL FACTORIAL EXPERIMENT OF DATA SAMPLE  12-4) 

A 0 A, 

B0 ßx Bo Bi 

c 
D0 4.2          (1) 2.9         ab 

*-0 

£>i 5.0         bd 3.0         ad 

c 
Do 4.6         be 2.8         ac 

*-l 

D, 4.0         cd 2.3         abed 

12-4.2    ANALYSIS 

12-4.2.1 Estimates of Main Effects and Interactions. We use the Yates procedure described in 
Paragraph 12-2.2.1, replacing n by n' where n' = n — b for the particular fractional factorial used 
(see Table 12-4). In other words, make a table with n' + 2 columns. In column 1 of the Yates 
table, list the treatment combinations in the order given in the plan in Table 12-4. The last column 
of the Yates table (column n' + 2) will give the gr's corresponding to the effects, in the order listed 
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in the "estimated effects" column of Table 12-4. To obtain the estimates of main effects and 
interactions, divide each g by 2"'~l. In Table 12-6, we show the Yates method of analysis applied 
to a fractional factorial experiment, using the results of Data Sample 12-4. 

For fractional factorial plans that are not given in Table 12-4, see Davies(3) for the Yates method 
of analysis. 

TABLE  12-6.    YATES' METHOD OF ANALYSIS USING DATA SAMPLE  12-4 

1 2 3 4 5 
Treatment Response Estimated 

Combination (Yield) 9 Effect 

(1) 4.2 7.2 15.1 28.8 T 
ad 3.0 7.9 13.7 -6.8 A 
bd 5.0 6.8 -3.3 0.8 B 
ab 2.9 6.9 -3.5 -2.0 AB + CD 
cd 4.0 -1.2 0.7 -1.4 C 
ac 2.8 -2.1 0.1 -0.2 AC + BD 
be 4.6 -1.2 -0.9 -0.6 BC + AD 

abed 2.3 -2.3 -1.1 -0.2 D 

Total 28.8 
Sum of 

Squares 110.34 882.72 

Checks:  (see Steps 6, 7, and 8 of Paragraph 12-2.2.1). 

The sum of column 2 should equal gT, the first entry in column 5. 

The sum of squares of entries in column 2 should equal the sum of squares of the g's divided 
by 2»' = 23 = 8.    (110.34 = 882.72/8 = 110.34). 

gA = sum of all yields in which A is at its higher level minus sum of all yields in which A is at 
its lower level. 

gA = 11.0 - 17.8 = -6.8. 

Similarly, 

g„ = 14.8 - 14.0 = 0.8 

gc = 13.7 - 15.1 = -1.4. 
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12-4.2.2    Testing for Significance of Main Effects and Interactions.    Before using this procedure, 
read Paragraph 12-1.2, and perform the computations specified in Paragraph 12-4.2.1. 

Procedure 

(1) Choose a, the level of significance. 

(2) If no external estimate of the variation due 
to experimental error is available,* check 
the lines in the Yates table that correspond 
to estimated effects which are expected to 
be zero. Compute the sum of squares of 
the g's for the lines checked. 

(3) To obtain s2, divide the sum of squares ob- 
tained in Step (2) by 2n'v, where v is the 
number of interactions included. If an 
independent estimate of the variation due to 
experimental error is available, use this s2. 

(4) Look up ti_„/2 for v degrees of freedom in 
Table A-4. 

(5) Compute 

w = (2"')ä«1_„/2s 

Example 

(1) Let a = .05 

(2) See Step (3). 

(3) In the analysis, we use an independent esti- 
mate of s2, from 24 pairs of duplicate 
measurements obtained in another part of 
the larger program: 

s2 = .0408 
s = .202 
v = 24 

(4) t.sn for 24 d.f. = 2.064 

(5) 

w = V8 (2.064) (0.202) 
= (2.828) (0.417) 
= 1.18 

(6) For any main effect or interaction X, if the 
absolute value of gx is greater than w, con- 
clude that X is different from zero. For 
example, if | gA \ > w, conclude that the A 
effect is different from zero. Otherwise, 
there is no reason to believe that X is 
different from zero. 

(6) See Table 12-6. \gA\ = 6.8, \gc\ = 1.4, 
and |gAH + CD\ = 2.0 are all greater than w; 
therefore, the main effect of A, the main 
effect of C, and the mixed interaction 
AB + CD are believed to be significant. 

: See Paragraph 12-1.2 . 
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CHAPTER  13 

RANDOMIZED BLOCKS, LATIN SQUARES, 

AND OTHER SPECIAL-PURPOSE DESIGNS 

13-1     INTRODUCTION 

The experimental designs treated in this chapter (with a single exception) make use of the 
planned grouping discussed in Chapter 11. The exception is the completely-randomized design 
discussed in Paragraph 13-2, which is included here as a contrast to the blocked designs that follow. 
In Paragraph 13-3, we discuss the simplest type of blocked design, randomized blocks, where blocking 
is made with respect to one source of inhomogeneity and the block is large enough to accommodate 
all the treatments we wish to test. In Paragraph 13-4, incomplete-block designs, the blocking again 
is one-way, but the block size is not large enough for all treatments to be tested in every block. 
In one case, the designs are called balanced incomplete-block plans (Paragraph 13-4.2), because 
certain restrictions on the assignment of treatments to blocks lead to equal precision in the estima- 
tion of differences between treatments. 

The chain block design, a special type of incomplete block design without this balance in the 
precision of the estimates, is discussed in Paragraph 13-4.3. 

When the experimental plan is designed to eliminate two sources of inhomogeneity, two-way 
blocking is used. The Latin squares and Youden squares (Paragraphs 13-5 and 13-6) are examples 
of such designs. 

13-2    COMPLETELY-RANDOMIZED PLANS 

13-2.1     PLANNING 

This plan is simple, and is the best choice when the experimental material is homogeneous and 
background conditions can be well controlled during the experiment. If there are a total of N 
available experimental units, and we wish to assign nlt n?, . . . , nt experimental units respectively 
to each of the t treatments or products, then we proceed to assign the experimental units to the 
treatments at random. As an example, suppose we wish to test three types of ammunition of a 
given size and caliber, to see which type has the highest velocity. We have rii, w2, n% shells, 
respectively, of the three types. If the conditions under which the shells are fired are assumed 
to be the same for each shell, i.e., temperature, barrel conditions, etc., then the simplest plan is to 
choose the shells at random and fire them in that order. It is obvious that if we fired all the shells 
of one type first, and then fired all the shells of the next type, etc., we would have no insurance 
against influences on velocity such as the wearing of the gun barrel or changes in atmospheric 
conditions such as temperature. Randomization affords insurance against uncontrollable dis- 
turbances in the sense that such disturbances have the same chance of affecting each of the factors 
under study, and will be balanced out in the long run. 

The results of a completely-randomized plan can be exhibited in a table such as Table 13-1. 
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TABLE   13-1.    SCHEMATIC  PRESENTATION OF  RESULTS  FOR  COMPLETELY-RANDOMIZED  PLANS 

Observation 
Treatment 

1 2 t 

1 
2 
3 

Total 
1 

Mean 

13-2.2    ANALYSIS 

Follow the procedure of Chapter 3, Paragraph 3-4, which gives the method for comparing the 
averages of several products. 

13-3    RANDOMIZED BLOCK PLANS 

13-3.1    PLANNING 

In comparing a number of treatments, it is clearly desirable that all other conditions be kept as 
nearly constant as possible. Often the required number of tests is too large to be carried out under 
similar conditions. In such cases, we may be able to divide the experiment into blocks, or planned 
homogeneous groups (see Chapter 11). When each such group in the experiment contains exactly 
one observation on every treatment, the experimental plan is called a randomized block plan. 

There are many situations where a randomized block plan can be profitably utilized. For 
example, a testing scheme may take several days to complete. If we expect some systematic dif- 
ferences between days, we might plan to observe each item on each day, or to conduct one test 
per day on each item. A day would then represent a block. In another situation, several persons 
may be conducting the tests or making the observations, and differences between operators are 
expected. The tests or observations made by a given operator can be considered to represent a 
block. 

The size of a block may be restricted by physical considerations. Suppose we wished to test 
the wearing qualities of two different synthetic substances used as shoe soles. The two feet of an 
individual constitute a logical block, since the kind and amount of wear usually is very nearly the 
same for each foot. 

In general, a randomized block plan is one in which each of the treatments appears exactly once 
in every block. The treatments are allocated to experimental units at random within a given 
block. 

The results of a randomized block experiment can be exhibited in a two-way table such as Table 
13-2, assuming we have b blocks and t treatments. 
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TABLE  13-2.    SCHEMATIC PRESENTATION OF RESULTS FOR RANDOMIZED BLOCK PLANS 

Block 
Treatment 

Total Block Mean 

1 2 t 
= B/t 

1 By 

2 
i 

B2 

b Bb 

. Total Tx Ta T, G 

Treatment 
Mean = T/b 

Since each treatment occurs exactly once in every block, the treatment totals or means are 
directly comparable without adjustment. 

13-3.2    ANALYSIS 

The analysis of a randomized block experiment depends on a number of assumptions. We assume 
that each of the observations is the sum of three components. If we let Y,v be the observation on 
the ith treatment in the yth block, then 

Yu = <p{ + ßj + e,7, 

where ßj is a term peculiar to a given block. It is the amount by which the response of 
a given treatment in the yth block differs from the response of the same treatment averaged 
over all blocks, assuming no experimental error. 

ipi is a term peculiar to the ith treatment, and is constant for all blocks regardless of the 
block in which the treatment occurs. It may be regarded as the average value of the ith 
treatment averaged over all blocks in the experiment, assuming no experimental error. 

e,-j is the experimental error associated with the measurement Y a. 

In order to make interval estimates for, or to make tests on, the tp,'s or the ß/s, we generally 
assume that the experimental errors e,/s are independently and normally distributed. However, 
if the experiment was randomized properly, failure of this assumption will, in general, not cause 
serious difficulty. 

13-3 



AMCP  706-112      PLANNING AND ANALYSIS OF EXPERIMENTS 

Data Sample 13-3.2 — Conversion Gain of Resistors 

The following data, tabulated as outlined in Table 13-2, represent conversion gain of four re- 
sistors measured in six test sets. Conversion gain is defined as the ratio of available current-noise 
power to applied direct-current power expressed in decibel units, and is a measure of the efficiency 
with which a resistor converts direct-current power to available current-noise power. 

We are interested in possible differences among treatments (test sets) and blocks (resistors). 

Resistor 
Test Set (Treatments) 

Total Mean (Blocks) 
1463        1506 1938 1946 1948 2140 

3 
4 
5 
6 

138.0 
152.2 
153.6 
141.4 

141.6 
152.2 
154.0 
141.5 

137.5 
152.1 
153.8 
142.6 

141.8 
152.2 
153.6 
142.2 

138.6 
152.0 
153.2 
141.1 

139.6 
152.8 
153.6 
141.9 

B, = 837.1 
Bt = 913.5 
B, = 921.8 
B4 = 850.7 

6, = 139.52 
b-2 = 152.25 
b3 = 153.63 
bt = 141.78 

Total 
7\ = 

585.2 
T, = 

589.3 
T, = 

586.0 
T4 = 

589.8 
T, = 

584.9 
Te = 

587.9 
G = 
3523.1 

Mean 
tl = 

146.30 
t, = 

147.32 
t, = 

146.50 
t, = 

147.45 
h = 

146.22 
h = 

146.98 

13-3.2.1    Estimation of the Treatment Effects.    A treatment effect <p: is estimated by the mean of 
the observations on the ith treatment.    That is, the estimate of <fn is tc = T Jb. 

For example, see Data Sample 13-3.2.    The estimate of the effect of Test Set 1463 is tx = 2V4 = 
585.2/4 = 146.30.    Similarly, U_ = 147.32, t, = 146.50, t, = 147.45, t5 = 146.22, tß = 146.98. 

13-4 



RANDOMIZED BLOCK PLANS AMCP  706-112 

13-3.2.2    Testing and Estimating Differences in Treatment Effects 

Procedure 

(1) Choose a, the significance level of the test 

(2) Lookup q^a (t, v) in Table A-10, 
where 

y =  (b - 1) (t - 1) 

(3) Compute 
St = {T\ + Tl + . . . + Tf)/b - G'/tb 

(4) Compute 
S„ = {B\ + Bl + ... + B\)/t - Gytb 

(5) Compute 

;=-i i-i 

i.e., compute the sum of the squares of all 
the observations, and subtract G-/tb. 

(6) Compute 
s2 = (S - S„ - St)/(b - 1) (t - 1) 

and 
s 

(7) Compute 
w = qi-a s/Vb 

(8) If the absolute difference between any two 
estimated treatment effects exceeds w, de- 
cide that the treatment effects differ; other- 
wise, the experiment gives no reason to 
believe the treatment effects differ. 

(1)   Let 

Example 

a = .05 

(2)   From Data Sample 13-3.2, 
qM (6, 15) = 4.59 

(3) 

(4) 

(5) 

(6) 

(7) 

S, = 517,181.998 - 517,176.400 
= 5.598 

Sh = 518,104.065 - 517,176.400 
= 927.665 

S = 518,123.13 - 517,176.40 
= 946.73 

s2 = 13.467/15 
= 0.8978 

s = 0.9475 

to = (4.59) (0.9475)/V4 
= 2.175 

(8) Since there is no pair of treatment means 
whose difference exceeds 2.175, we have no 
reason to conclude that test sets differ. 

Note:   It should be noted that for all possible pairs of treatments i and ;', we can make the 
statements 

ti — tj — V) < <pi — <pj < ti — tj + w 

with 1 — a confidence that all the statements are simultaneously true. 

13-3.2.3 Estimation of Block Effects. The block effect ßj is estimated by the mean of the obser- 
vations in the /th block minus the grand mean. That is, the estimate of ß,■, the ;'th block effect, 
is bj = Bj/t - G/bt. 

For example, using Data Sample 13-3.2, the grand average equals G/bt = 3523.1/24 = 146.80. 

bi = 139.52 - 146.80 b» = 153.63 - 146.80 
= - 7.28 =      6.83 

62 = 152.25 - 146.80 b, = 141.78 - 146.80 
5.45 = - 5.02 

13-5 



AMCP 706-112 PLANNING AND ANALYSIS OF EXPERIMENTS 

13-3.2.4    Testing and Estimating Differences in Block Effects. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up #i_a (b, v) in Table A-10, 
where 

v = (6 - 1) (t - 1) 

Example 

(1) Let a = .05 

(2) From Data Sample 13-3.2 : 

v = (4 - 1) (6 - 1) 
= 15 

q.ai (4, 15) = 4.08 

(3) 

(4) 

(5) 

(6) 

Same as Steps (3), (4), (5), and (6), in 

Paragraph 13-3.2.2 

(7)   Compute 

(3) 

(4) 

(5) 

(6) 

(7) 

St = 5.598 

S„ = 927.665 

S = 946.73 

s2 = 0.8978 
s = 0.9475 

IV qi-a s/Vt 

(8) If the absolute difference between any two 
block effects exceeds w', conclude that the 
block effects differ; otherwise, the experi- 
ment gives no reason to believe that block 
effects differ. 

w' = (4.08) (0.9475)/V6 
= 1.578 

(8) See Paragraph 13-3.2.3. The absolute dif- 
ference between two block effects does 
exceed 1.578, and we conclude that re- 
sistors do differ. 

Note: As in the case of treatment effects, we can make simultaneous statements about the 
difference between pairs of blocks i and j, with confidence 1 — a that all the statements are simul- 
taneously true.    The statements are, for all i and j, 

bi - bj - w' < ßi - ßj< bi - bj + w'. 

13-4    INCOMPLETE BLOCK PLANS 

13-4.1    GENERAL 

Incomplete block plans are similar to the randomized block plans of Paragraph 13-3, in that 
they make use of planned grouping. The distinguishing feature of incomplete block plans is that 
the block size is not large enough to accommodate all treatments in one block. For example, 
suppose that a block is one day, but that the time required for each test is so long that all experi- 
mental treatments cannot be run in one day. The limitation may be due to lack of space; such is 
the case in spectrographic analysis where a block may be one photographic plate, and the number 
of specimens to be compared may exceed the capacity of the plate. 
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We discuss two kinds of randomized incomplete block plans — balanced incomplete block plans 
in Paragraph 13-4.2, and chain block plans in Paragraph 13-4.3 . The former have the advantage 
of easy analysis and the important property that all differences between treatment effects are 
estimated with the same precision. The chain block plans have an advantage when we wish to 
keep the number of duplicate observations on treatments to a minimum, and are very useful when 
the difference in treatments considered worth detecting is large in comparison to the amount of 
experimental error. (Experimental error may be thought of as the difference between an observed 
treatment and the average of a large number of similar observations under similar conditions.) 

Other incomplete block designs are available if these two classes do not meet the desires of the 
experimenter with regard to number of blocks, size of blocks, number of treatments, etc. An 
important and very large class of designs is the class called the "partially-balanced incomplete 
block designs" (see Böse, et al.(I)). Experiments using these plans, which are not discussed here, 
are slightly more complicated to analyze. 

13-4.2    BALANCED INCOMPLETE BLOCK PLANS 

13-4.2.1    Planning.    We define r, b, t, k, A, E, and N as follows: 

r = number of replications (number of times each treatment appears in the plan); 
b = number of blocks in the plan; 
t = number of treatments; 
k = number of treatments which appear in every block; 

\ = number of blocks in which a given treatment-pair appears, A = — ~; 

E = a constant used in the analysis, E = tX/rk; 
N = total number of observations, N = tr = bk. 

Using this nomenclature, it is possible to enumerate the situations in which it is combinatorially 
possible to construct a balanced incomplete block design. Plans are listed in Table 13-3 for 
4 < t < 10, r < 10.  For some other balanced incomplete block plans, see Cochran and Cox.(2) 

If we wish to estimate and to make tests of block effects as well as treatment effects, we should 
consider the plans where b = t, i.e., the number of blocks equals the number of treatments. In 
such plans, called symmetrical balanced incomplete block designs, differences between block effects 
are estimated with equal precision for all pairs of blocks. 

To use a given plan from Table 13-3, proceed as follows: 

(1) Rearrange the blocks at random. (In a number of the plans in Table 13-3, the blocks are 
arranged in groups.    In these plans, rearrange the blocks at random within their respective groups). 

(2) Randomize the positions of the treatment numbers within each block. 

(3) Assign the treatments at random to the treatment numbers in the plan. 
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TABLE 13-3.    BALANCED INCOMPLETE BLOCK PLANS (4 < / < 10, r < 10) 

Index 

t Ef Plan 
No.ff 

10 

3 
3 

4 
>; 
4 

5 
5 

10 
10 

"• 

6 
3 
4 
6 

7 
7 
7 

8 
4 
8 

10 
8 

6 
4 

10 
10 

5 

15 
10 
20 
15 

6 

21 
7 
7 
7 

28 
14 

8 

36 
12 
18 
18 
12 

9 

45 
30 
15 
18 
15 
10 

1 
2 

2/3 
8/9 

1 
3 
3 

5/8 
5/6 

15/16 

1 
2 
4 
ti 
4 

3 5 
4/5 
4/5 
9/10 

24/25 

1 
1 
2 
5 

7/12 
7/9 
7/8 

35/36 

1 
3 
6 

4/7 
6/7 

48/49 

1 
1 
3 
"> 
5 
7 

9/16 
3/4 

27/32 
9/10 

15/16 
63/64 

1 
2 
2 
4 
5 
8 

5/9 
20/27 

5/6 
8/9 

25/27 
80/81 

9 
10 

11 
12 
13 
14 

15 
16 
17 
18 
19 

t The constant E = tx/rk is used in the analysis. 
ft The asterisk indicates plans that may be constructed by forming all possible combinations of the t treatments in 

blocks of size k.    The number of blocks b serves as a check that no block has been missed. 

Plan 1:   f = 4, k = 2, r = 3, b = 6, X 

Grouj^I 

(1) 1,2 
(2) 3,4 

l,F=2/3 

Group II 

(3) 1,3 
(4) 2,4 

Group III 

(5) 1,4 
(6) 2,3 

Plan 2:   t = 5, k = 2, r = 4, b = 10, A = 1, £ = 5/8 

Group I 

(1) 1,2 
(2) 2,5 
(3) 3,4 
(4) 4,1 
(5) 5, 3 

Group II 

(6) 1,3 
(7) 2,4 
(8) 3,2 
(9) 4,5 

(10) 5,1 
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TABLE  13-3.    BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 <t < 10, r< 10) 

Plan 3:   t = 6, k = 2, r = 5, fa = 15, X = 1, E = 3/5 

Group I Group II Group III Group IV GroupJV 

(1) 1,2 
(2) 3,4 
(3) 5,6 

(4) 1,3 
(5) 2,5 
(6) 4,6 

(7) 1,4 
(8) 2,6 
(9) 3,5 

(10) 1,5 
(11) 2,4 
(12) 3, 6 

(13) 1,6 
(14) 2,3 
(15) 4, 5 

(7) 1,2,6 
(8) 3,4,5 

Group VIII 

(15) 
(16) 

1,4,5 
2,3,6 

Plan 4:   t = 6, k = 3, r = 5, fa = 10, X = 2, E = 4/5 

(1) 1,2,5 (5) 1,4,5 (8) 2,4,6 
(2) 1, 2, 6 (6) 2, 3, 4 (9) 3, 5, 6 
(3) 1,3,4 (7) 2,3,5 (10) 4,5,6 
(4) 1,3,6 

Plan 5:   t = 6, k = 3, r = 10, fa = 20, X = 4, E = 4/5 

GroupJ GroupJI Gjwpjfll G™HFLlY 

(1) 1,2,3 (3)    1,2,4 (5)    1,2,5 
(2) 4, 5, 6 (4)    3, 5, 6 (6)    3, 4, 6 

GroupV Group VI Group VII 

(9)    1, 3, 4 (11)    1, 3, 5 (13)    1, 3, 6 
(10)    2, 5, 6 (12)    2, 4, 6 (14)    2, 4, 5 

Group^IX Group X 

(17) 1,4,6 (19)    1,5,6 
(18) 2, 3, 5 (20)    2, 3, 4 

Plan 6:   f = 6, k = 4, r = 10, fa = 15, X = 6, £ = 9/10 

Group_I Group II Group III 

(1) 1,2,3,4 (4)    1,2,3,5 (7)    1,2,3,6 
(2) 1,4,5,6 (5)    1,2,4,6 (8)    1,3,4,5 
(3) 2, 3, 5, 6 (6)    3, 4, 5, 6 (9)    2, 4, 5, 6 

Group IV Groups 

(10) 1, 2, 4, 5 (13)    1, 2, 5, 6 
(11) 1, 3, 5, 6 (14)    1, 3, 4, 6 
(12) 2, 3, 4, 6 (15)    2, 3, 4, 5 

* In the Plans, block numbers are in parentheses followed by numbers which indicate treatments. In a number of 
the plans given, the blocks are arranged in groups. In setting up the experiment, make the groups as homogeneous as 
possible — i.e., if possible there should be more difference between blocks in different groups than between blocks in the 
same group. 
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TABLE  13-3.    BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

Plan 7:   f = 7, k = 3, r = 3, b = 7, X = 1, E = 7/9 

(1) 1, 2, 4 (3)    3, 4, 6 (5)    5, 6, 1 (7)    7, 1, 3 
(2) 2, 3, 5 (4)    4, 5, 7 (6)    6, 7, 2 

Plan 8:   f = 7, k = 4, r = 4, b = 7, X = 2, E = 7/8 

(1) 1, 2, 3, 6 (3)    3, 4, 5, 1 (5)    5, 6, 7, 3 (7)    7, 1, 2, 5 
(2) 2, 3, 4, 7 (4)    4, 5, 6, 2 (6)    6, 7, 1, 4 

Plan 9:   f = 8, k = 2, r = 7, b = 28, X = 1, E = 4/7 

Group^T GroupJI Group HI Group IV 

(1) 1,2 (5) 1, 3 (9) 1, 4 (13) 1,5 
(2) 3,4 (6) 2, 8 (10) 2, 7 (14) 2,3 
(3) 5, 6 (7) 4, 5 (11) 3, 6 (15) 4,7 
(4) 7,8 

Group V 

(17) 1,6 
(18) 2,4 
(19) 3, 8 
(20) 5, 7 

(8) 6, 7 (12) 

Group VI 

(21) 1,7 
(22) 2, 6 
(23) 3, 5 
(24) 4, 8 

5, 8 (16) 6, 8 

Group VII 

(25) 1,8 
(26) 2, 5 
(27) 3, 7 
(28) 4,6 

Plan 10:  t = 8, k = 4, r = 7, b = 14, X = 3, E = 6/7 

Group_I GroupJI                     Group HI                    Gj^MPJY 

(1) 1, 2, 3, 4 (3)    1, 2, 7, 8              (5) 1, 3, 6, 8              (7)    1, 4, 6, 7 
(2) 5, 6, 7, 8 (4)    3, 4, 5, 6              (6) 2, 4, 5, 7              (8)    2, 3, 5, 8 

Group V GroyPZI                              GrmipVII 

(9)    1, 2, 5, 6 (11)    1, 3, 5, 7                      (13)    1, 4, 5, 8 
(10)    3, 4, 7, 8 (12)    2, 4, 6, 8                      (14)    2, 3, 6, 7 

* See footnote on page 13-9. 
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TABLE  13-3.    BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4<f < 10, r< 10) 

Plan 11:  i = 9, k = 3, r = 4, fa = 12, X = 1, E = 3/4 

Group I Group II Group III Group IV 

(1) 
(2) 
(3) 

1, 2, 3 
4,5,6 
7,8,9 

(4) 
(5) 
(6) 

1,4,7 
2, 5,8 
3, 6, 9 

(7) 
(8) 
(9) 

1,5,9 
7,2,6 
4,8,3 

(10) 
(ID 
(12) 

1,8,6 
4,2,9 
7,5,3 

Plan 12:   / = 9, k = 4, r = 8, fa = 18, X = 3, E = 27/32 

Group I 

Plan 13:   f = 9, k = 5, r 

(1) 1, 4,6, 7 
(2) 2, 6,8, 9 
(3) 3, 8,9, 1 
(4) 4, 1,3, 2 
(5) 5, 7,1, 8 
(6) 6, 9,4, 5 
(7) 7, 3,2, 6 
(8) 8, 2,5, 4 
(9) 9, 5,7, 3 

•= 1 10, b= 18, X 

Group I 

5, E = 9/10 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

1, 2, 3, 7, 8 
2, 6, 8, 4, 1 
3, 8, 5, 9, 2 
4, 3, 9, 2, 6 
5, 1, 7, 3, 4 
6, 4, 2, 5, 7 
7, 9, 1, 6, 3 
8, 5, 4, 1, 9 
9, 7, 6, 8, 5 

Plan 14:   t = 9, k = 6, r = 8, fa = 12, X = 5, E = 15/16 

Group I 

(1) 1,2,4,5,7,8 
(2) 2,3,5,6,8,9 
(3) 1, 3, 4, 6, 7, 9 

Group III 

(7) 1,3,5,6,7,8 
(8) 1, 2, 4, 6, 8, 9 
(9) 2, 3, 4, 5, 7, 9 

* See footnote on page 13-9. 

Group II 

(10) 1, 2, 5, 7 
(11) 2, 3, 6, 5 
(12) 3, 4, 7, 9 
(13) 4, 9, 2, 1 
(14) 5, 1, 9, 6 
(15) 6, 8, 1, 3 
(16) 7, 6, 4, 8 
(17) 8, 5, 3, 4 
(18) 9, 7, 8, 2 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

Group II 

1, 2, 3, 5, 9 
2, 6, 5, 1, 8 
3, 5, 1, 4, 6 
4, 3, 2, 8, 7 
5, 7, 9, 2, 4 
6, 8, 7, 3, 5 
7, 4, 8, 9, 1 
8, 9, 4, 6, 3 
9, 1, 6, 7, 2 

Group II 

(4) 1, 2, 5, 6, 7, 9 
(5) 1, 3, 4, 5, 8, 9 
(6) 2, 3, 4, 6, 7, 8 

Group IV 

(10) 4, 5, 6, 7, 8, 9 
(11) 1, 2, 3, 4, 5, 6 
(12) 1, 2, 3, 7, 8, 9 
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TABLE  13-3.    BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

Plan 15:   t = 10, k = 2, r = 9, fa = 45, X = 1, E = 5/9 

Group I Group II Group III Group IV Group V 

(1) 1,2 
(2) 3,4 
(3) 5,6 
(4) 7,8 
(5) 9, 10 

(6) 
(7) 
(8) 
(9) 

(10) 

1, 3             (11) 
2, 7             (12) 
4, 8             (13) 
5, 9             (14) 
6, 10            (15) 

1, 
2, 
3, 
5, 
6, 

4 
1C 
7 
8 
9 

(16) 
»           (17) 

(18) 
(19) 
(20) 

1, 
2, 
3, 
4, 
6, 

5 
8 
10 
9 
7 

(21) 1,6 
(22) 2, 9 
(23) 3, 8 
(24) 4, 10 
(25) 5, 7 

Group VI Group VII Group WII Group IX 

(26) 1,7 
(27) 2, 6 
(28) 3, 9 ■ 
(29) 4,5 
(30) 8, 10 

(31) 1,8 
(32) 2, 3 
(33) 4,6 
(34) 5, 10 
(35) 7, 9 

(36) 1, 9 
(37) 2,4 
(38) 3, 5 
(39) 6, 8 
(40) 7, 10 

(41) 1,10 
(42) 2,5 
(43) 3, 6 
(44) 4, 7 
(45) 8, 9 

Plan 16:   t = 10, k = 3, r = 9, fa = 30, X = 2, £ = 20/27 

(1) 1,   2,   3 (ID 1, 2,   4 (21) 1,   3,   5 
(2) 2,   5,   8 (12) 2, 3,   6 (22) 2,   7,   6 
(3) 3,   7,   4 (13) 3, 4,   8 (23) 3,   8,   9 
(4) 4,   1,   6 (14) 4, 9,   5 (24) 4,   2, 10 
(5) 5,   8,   7 (15) 5, 7,   1 (25) 5,   6,   3 
(6) 6,   4,   9 (16) 6, 8,   9 (26) 6,   1,   8 
(7) 7,   9,   1 (17) 7, 10,   3 (27) 7,   9,   2 
(8) 8, 10,   2 (18) 8, 1, 10 (28) 8,   4,   7 
(9) 9,   3, 10 (19) 9, 5,   2 (29) 9, 10,   1 

(10) 10,   6,   5 (20) 10, 6,   7 (30) 10,   5,   4 

Plan 17: f = 10, k = 4, r = 6, fa = = 15, X = 2, E= 5/6 

(1)    1, 2, 3, 4 (6)    1, 6, 8, 10 (11) 3, 5, 9, 10 
(2)    1, 2, 5, 6 (7)    2,3,6,9 (12) 3, 6, 7, 10 
(3)    1,3,7,8 (8)    2, 4, 7, 10 (13) 3, 4, 5, 8 
(4)    1, 4, 9, 10 (9)    2, 5, 8, 10 (14) 4, 5, 6, 7 
(5)    1, 5, 7, 9 (10)    2,7,8,9 (15) 4, 6, 8, 9 

* See footnote on page 13-9. 
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TABLE  13-3.    BALANCED INCOMPLETE BLOCK PLANS* (Continued) 
(4 < t < 10, r < 10) 

Plan 18:   f = 10, k = 5, r = 9, b = 18, X = 4, E = 8/9 

(1)    1,2,3,4,5 (7)    1,4,5,6,10 (13) 2, 5, 6, 8, 10 
(2)    1,2,3,6,7 (8)    1, 4, 8, 9, 10 (14) 2, 6, 7, 9, 10 
(3)    1,2,4,6,9 (9)    1,5,7,9,10 (15) 3, 4, 6, 7, 10 
(4)    1,2,5,7,8 (10)    2, 3, 4, 8, 10 (16) 3, 4, 5, 7, 9 
(5)    1, 3, 6, 8, 9 (11)    2, 3, 5, 9, 10 (17) 3, 5, 6, 8, 9 
(6)    1, 3, 7, 8, 10 (12)    2,4,7,8,9 (18) 4, 5, 6, 7, 8 

Plan 19:   f = 10, k = 6, r = 9, b = 15, X = 5, E = 25/27 

(1)    1,2,4,5,8,9 (6)    2, 3, 4, 6, 8, 10 (11) 1, 4, 5, 7, 8, 10 
(2)    5, 6, 7, 8, 9, 10 (7)    1,2,6,7,9,10 (12) 1, 2, 3, 5, 7, 10 
(3)    2, 4, 5, 6, 9, 10 (8)    1, 3, 5, 6, 8, 9 (13) 2, 3, 5, 6, 7, 8 
(4)    1,2,4,6,7,8 (9)    1, 2, 3, 8, 9, 10 (14) 1, 3, 4, 5, 6, 10 
(5)    3, 4, 7, 8, 9, 10 (10)    2,3,4,5,7,9 (15) 1, 3, 4, 6, 7, 9 

See footnote on page 13-9. 

For analysis, the results of a balanced incomplete block design may be exhibited in a table such 
as Table 13-4, which shows the arrangement for Plan 7 of Table 13-3. 

TABLE  13-4.    SCHEMATIC REPRESENTATION OF RESULTS FOR A BALANCED INCOMPLETE 
BLOCK PLAN 

Plan 7 of Table 13-3 is used here for illustration. 

Treatment 
Block Total 

A B c D E F G 

1 X X X £i 
2 X X X B2 

3 X X X B3 

4 X X X BA 

5 X X X B, 
6 X X X Be 

7 X X X B7 

Total TA TB Tc TD TK TF To G 
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13-4.2.2 Analysis. In the analysis of the balanced incomplete block plans the same model is 
used and the same assumptions are made as in the randomized block plans. The only difference 
is that, in the present case, the blocks do not each contain all of the treatments. 

The analysis described here is sometimes called the intra-block analysis. 

Data Sample 13-4.2.2 — Noise Measurement of Resistors 

A certain film-type composition resistor used in electronic equipment is of the type which is 
mounted on a ceramic plate. An investigation was designed to determine the effects of four dif- 
ferent geometrical shapes of resistors on the current-noise of these resistors. Since only three 
resistors could be mounted on one plate, an incomplete block design was used. The plan required 
a total of 12 resistors (three of each of the four shapes). In the plan, the ceramic plates are blocks 
(b = 4); the resistor shapes are treatments (t = 4) and the plan is summarized by the following 
parameters: t = 4, b = 4, k = 3, r = 3, X = 2, E = 8/9, N = 12. Note that this is a symmetrical 
balanced incomplete block design; i.e., the number of blocks equals the number of treatments. 

The following entries are logarithms of the noise measurement. 

Plates 
Shapes (Treatments) 

(Blocks) 
A B c D 

Total 

1 
2 
3 
4 

1.11 
1.70 
1.60 

1.22 
1.11 
1.22 

.95 

1.52 
1.54 

.82 

.97 

1.18 

B, =   2.88 
B2 =   3.89 
B, =   4.23 
£4 =   3.94 

Total Tt = 4.41 7% = 3.55        T, = 4.01 T4 = 2.97 G  = 14.94 

t = 4, k = 3, b = 4, r = 3, A = 2, E = -, TV = 12. 
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13-4.2.2.1 Estimating Treatment Effects. We assume that the observations have been exhibited 
in a table such as Table 13-4. The treatment effects cannot be estimated directly from the treat- 
ment averages, and must be adjusted for possible block effects. The estimate of <pi, the effect of 
the tth treatment, is 

U = Q,/Er + G/rt, 

where 

Qi = Tt — [(Sum of totals of all blocks containing treatment i)/k}. 

For example, using Data Sample 13-4.2.2, 

'B\ + Bi + Bz\ 

Similarly, 

Ql = Tl ~ ( 3 

= 441-^0 
3 

= 4.41 - 3.6667 
= 0.7433 

Q2 = 3.55 - \2M 
3 

= 3.55 - 4.0200 
= -0.4700 

n       AM      11-05 Q3 = 4.01 g— 

= 4.01 - 3.6833 
= 0.3267 

Q, = 2.97 - ™p 

= 2.97 - 3.5700 
= -0.6000 

E = 8/9, r = 3, Er = 2.6667, t = 4, rt = 12, 
G/rt = 14.94/12 

= 1.2450 

t   -9l.G _ 0,3267 
h ~ Er + rt h - 2.6667 + L245° 

0.7433 
2.6667 
1.5237 

1.2450 = 1.3675 

_ -0.4700 _ -0.6000 
_   2.6667   + 1"d4ÖU '4 _   2.6667 
= 1.0688 = 1.0200 
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13-4.2.2.2    Testing and Estimating Differences in Treatment Effects. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up q^a (t, ») in Table A-10, 
where 

v = tr-t-b + l 

(3) Compute Q,  and  t; for each treatment. 
(The sum of the Q, should equal zero.) 

(4) Compute 

<j     QI + QI + ■■ . +Q-t 
*' ~                Er 

(5) Compute 

c       B\ + B! + . .. + BI G- 
At                      k rt 

(6)   Compute 

S = sn- - G'/rt; 
i.e., compute the sum of the squares of all 
the observations and subtract G-/rt. 

(7)   Compute 

s- = - 
tr - t - b + 1 

(8)   Compute 

w = qi-a s/VEr 

Example 

(1) Let a = .05 

(2) From Data Sample 13-4.2.2 : 

* = 4 
v = 5 

qM (4, 5) = 5.22 

(3) See Paragraph 13-4.2.2.1 

(4) 

St = 
L24012778 

2.6667 
0.46504 

(5) 

(6) 

S„ = 
56.8430 

18.60030 

= 0.34737 

(7) 

S = 19.4812 - 18.6003 
= 0.88090 

,      0.06849 
S" =    -6— 

= 0.0137 
s = 0.117 

(8) 

w 
(5.22) (0.117) 

1.63 
0.611 
1.63 

= 0.375 

(9) Since there are differences between pairs of 
treatment effects that do exceed 0.375, we 
conclude that resistor shapes differ with 
regard to their effect on current noise. 

(9) If the absolute difference between two esti- 
mated treatment effects exceeds w, con- 
clude that the treatment effects differ; 
otherwise, conclude that the experiment 
gives no reason to believe that the treat- 
ment effects differ. 

Note: We can make simultaneous confidence interval statements about the differences between 
pairs of treatments i and j, with confidence 1 — a that all statements are simultaneously true. 
The statements are, for all i and j, 

t; — tj — W < <Pi — ipj < t,  — tj + W . 
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13-4.2.2.3 Estimating Block Effects. Like the treatment effects, block effects cannot be esti- 
mated directly from block averages, but must be adjusted according to which treatments occur in 
them. We discuss estimation of the block effects for symmetrical plans only, i.e., where b = t, 
the number of blocks equals the number of treatments. If it is required to estimate or test block 
effects in a balanced incomplete block plan which is not symmetric, a statistical text book 
such as Cochran and Cox(2) or Fisher and Yates(3) should be consulted. 

For symmetric plans, the estimate of ß,-, the /th block effect, is 

bj = Q'j/Er 
where 

Q'j = Bj — (sum of totals of all treatments occurring in the yth block /r). 

For example, using Data Sample 13-4.2.2. 

T, + T, +.TA Qi = Bi - ( 

= 2.88 - 

Similarly, 

3 
1L39 

3 
= 2.88 - 3.7967 
= - 0.9167. 

Qi = 3.89 - ^P 

= 3.89 - 3.6433 
= 0.2467 

Qi = 4.23 - ^f- 

= 4.23 - 3.9900 
= 0.2400 

Qi = 3.94 - ±~ 

= 3.94 - 3.5100 
= 0.4300 

Er = 2.6667 
61 = - 0.9167/2.6667 

= - 0.34376 
bs = 0.2467/2.6667 

= 0.09251 
63 = 0.2400/2.6667 

= 0.09000 
64 = 0.4300/2.6667 

= 0.16125 
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I       13-4.2.2.4    Testing and Estimating Differences in Block Effects.   The procedure described applies 
to symmetrical balanced incomplete block plans only. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up ?i_„ (b, v) in Table A-10, 
where 

„ = tr - t - b + 1 

(3) Compute Q't and 6, for each block.    (The 
sum of the Q[ should equal zero.) 

(4) Compute 

Si = (Q;2 + Q? + . • • + Q?)/Er 

(5) Compute 

S't = (T? + T\ + . . . + T\)/r - G'/rt 

(6) Compute 

S = SF,/ - G*/rt; 

i.e., compute the sum of the squares of all 
individual observations and subtract G-/rt. 

(7) Compute 

s2 = (S-SJ - S'b)/(tr -t - 6 + 1) 
and 

Example 

(1) Let a = .05 

(2) See Data Sample 13-4.2.2 

t = 4 
6 = 4 
r = 3 
p = 5 

9.95 (4, 5) = 5.22 

(3) See Paragraph 13-4.2.2.3 

(4) 

(5) 

(6) 

(7) 

Er = 2.6667 
S'„ = 1.14369978/2.6667 

= 0.42888 

S't = 56.9516/3 - 18.60030 
= 18.98387 - 18.60030 
= 0.38357 

S = 19.4812 - 18.60030 
= 0.88090 

s2 = 0.06845/5 

= 0.0137 
s = 0.117 

Note: S't + S'b (as computed in steps (4) and (5) 
above) should equal St + Sb (as computed in 
Paragraph 13-4.2.2.2), and therefore the s- 
here should equal s- computed in Paragraph 
13-4.2.2.2. 

Note: S't + S'h = 0.81245 from steps (4) and (5) 
above. S, + Sb = 0.81241 from Paragraph 
13-4.2.2.2. The discrepancy is due to rounding 
error, and would be larger if fewer decimal 
places were carried in the computation. 

(8)   Compute 

w   = qi-a s /VEr 

(8) 

io' = (5.22) (0.117)/1.63 
= 0.611/1.63 
= 0.375 
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Procedure 

(9) If the absolute difference between any two 
estimated block effects exceed w', conclude 
that the block effects differ; otherwise, con- 
clude that the experiment gives no reason 
to believe the block effects differ. 

Example 

(9) Since there are differences between pairs of 
block effects that exceed 0.375, we con- 
clude that blocks (plates) do differ. 

Note: We can make simultaneous statements about the differences between pairs of blocks i 
and j, with confidence 1 — a that all the statements are simultaneously true. The statements are, 
for all i and j, 

bi - bj - w' < ß.: - ßj < b; - bj + w'. 

13-4.3    CHAIN BLOCK PLANS 

13-4.3.1 Planning. The chain block plan is useful when observations are expensive and the 
experimental error is small. Such a plan can handle a large number of treatments relative to the 
total number of observations. We need make only a few more observations than we have treat- 
ments to compare. Before using a chain block plan, however, we should be confident that the 
important differences in treatment effects are substantially larger than experimental error. 

In a chain block design, some treatments are observed once and some treatments are observed 
twice.    Schematically, the plan can be represented as in Table 13-5. 

TABLE  13-5.    SCHEMATIC REPRESENTATION OF A CHAIN BLOCK PLAN 

Blocks 

b- 1 

A[ A; 
Ar M 
X X 

X X 

ALt Al, 
A'b' A[ 

X 

X 

Total B, B2 Bb Bb G 
( = Grand 

Total) 

In Table 13-5, A'{ represents either a treatment or a group of treatments, and A'/ represents the 
same treatment or group of treatments. The x's represent treatments for which we have only one 
observation, and we need not have the same number of such treatments in every block. 

When the experimental conditions are appropriate for their use, chain blocks are a flexible and 
efficient design. They are easy to construct. After following through the example below, and 
with the help of Cochran and Cox/'2) the user should be able to produce a chain block plan suitable 
to his own needs. For a given number of blocks b and a given number of treatments t, various 
different plans may be constructed. The analysis is not too difficult, but is not as straightforward 
as the analysis of some simpler designs. 
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Two examples of chain block designs (Plan 1 and Plan 2) are given here.    The numbers in each 
block represent treatments. 

Plan 1: 

4 Blocks    (b = 4) 

13 Treatments    (t = 13) 

Block 

1 2 3 4 

w /3\ 
\4/ 

/5\ 
16/ 

m 
18/ 

w 
/5\ 
16/ 

m 
18/ 12/ 

9 10 11 12 

13 

Schematically, Plan 1 may be written: 

Block 

1 2 3 4 

A[ A; A'3 M 
A{' A'3' A[' A[' 
X X X X 

X 

In Plan 1, treatments 1 and 2 constitute the group Alt which appears in block 1 and block 4; 
treatments 3 and 4 constitute the group A2 (in block 1 and block 2); treatments 5 and 6 constitute 
the group A-, (in block 2 and block 3); and treatments 7 and 8 constitute the group A4 (in block 3 
and block 4). The remaining treatments (9 through 13) are distributed among the blocks to 
make the number of treatments per block as equal as possible. 

Treatments 1 through 8 appear twice each; treatments 9 through 13 appear once only. Treat- 
ment 1 never occurs without treatment 2, treatment 3 never occurs without treatment 4, etc. 
Thus, the treatments which are replicated twice fall into four groups (schematically Ai, A2, A.,, A4), 
and these groups are the links in the chain of blocks. Treatments 3 and 4 link blocks 1 and 2, 
treatments 5 and 6 link blocks 2 and 3, treatments 7 and 8 link blocks 3 and 4, and treatments 1 
and 2 complete the chain by linking blocks 4 and 1. 
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Plan 2: 

3 Blocks    (b = 3) 
11 Treatments (« = 11) 

Block 

1 2 3 

m 
(3J 

16J 
10 

5     . 
(6J 

m 
(9J 
11 

3j 

Schematically, Plan 2 may be written: 

Block 

1 2 3 

A[ A2 A; 
A',' A',1 Ar 
X X 

In Plan 2, the group of treatments 1, 2, and 3 are group Ax; treatments 4, 5, 6 constitute the 
group A2; and treatments 7, 8, 9 constitute the group A3. The remaining two treatments (10 
and 11) are assigned to blocks 1 and 2. Treatments 1 through 9 appear twice each, and treat- 
ments 10 and 11 appear once each. Treatments 1, 2, and 3 always occur together as a group; 
treatments 4, 5, and 6 always occur together; and treatments 7, 8, and 9 always occur together. 
Thus, the treatments which are replicated twice fall into three groups (schematically Ai, A2, A3). 
Group A2 links blocks 1 and 2, group A3 links blocks 2 and 3, and group Ai completes the chain by 
linking blocks 3 and 1. 

To use a given chain block plan, the numbers should be allocated to the treatments at random. 

13-4.3.2 Analysis. For purposes of analysis, the observations should be recorded in the form 
shown in Table 13-5. 

The parameters of the plan are: 
b = number of blocks in the plan; 

k, = number of observations in the ith block; 
t = number of treatments; 

m = number of treatments in each group A[ and A"; 
iV = total number of observations. 
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Data Sample 13-4.3.2 — Spectrographic Determination of Nickel 

The data are spectrographic determinations of nickel content of 42 rods prepared from the same 
ingot. Only about 18 determinations could be made on the same photographic plate, and there 
were 42 "treatments" to be compared; therefore, a chain block plan was used. In the experiment, 
there are three blocks (the photographic plates involved in the determinations) and 42 treatments 
(the rods). The selected chain block plan is shown schematically in Table 13-6. The parameters 
of this plan are:  b = 3, k = 18, t = 42, m = 4, and N = 54. 

The amounts of nickel were recorded as logarithms (base 10) of the ratio of the intensity of the 
nickel spectral line to the iron spectral line. In Table 13-7, these determinations have been coded 
by multiplying by 103 and then subtracting 170. 

The primary question to be answered is: Are there significant differences among rods (treat- 
ments)? 

TABLE  13-6.    SCHEMATIC REPRESENTATION OF THE CHAIN BLOCK DESIGN 
DESCRIBED IN DATA SAMPLE  13-4.3.2 

Block 

'\ ' 5 f 9 
A\ 2 K   J 6 K     1 10 

' 3 

'5 

s 
7 
8 

' 9 

< 
11 
[12 
r 1 

Ai' 6 A" 10 A['    . 2 
7 
8 

11 
J2 

< 3 
,4 

13 23 33 
14 24 34 
15 25 35 
16 26 36 
17 27 37 
18 28 38 
19 29 39 
20 30 40 
21 31 41 
22 32 42 

The numbers in the blocks represent treatments. 
The parameters of this plan are:   b = 3, k = 18, 
t = 42, m = 4, N = 54. 
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TABLE 13-7.    SPECTROGRAPHIC DETERMINATION OF NICKEL 
(DATA SAMPLE  13-4.3.2) 

Plates (Blocks) 

2 

f8 <i 4 h r-i <9 

A[     1  7 U Al J  3 U A'3 J   o t\o 
114 h lio h 1-3 tu 
[9 u 16 u i-8 t\2 

fl3 h f 5 u f    1 tx 
A2"    115 u A': J  7 t\o A[' j    5 t-2 

112 t- 1  2 tu 1    2 h 
(9 h I 6 tu 1  o 1. 

11 10 5 
5 9 -1 

17 6 -3 
14 7 -6 
12 6 2 
13 4 -2 
14 7 -2 
12 7 0 

8 9 1 
21 10 2 

Total Bi = 214 B2 = 118 53 = -8 G = 324 
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13-4.3.2.1    Estimating Treatment and Block Effects.    Since the method of estimating treatment 
effects requires calculation of the estimated block effects, we compute the block effects first. 

Procedure 

(1) Compute the sum of the observations for each of the groups A', A".    Call the totals X'{, X'/. 

(2) Record the totals X[, X", etc., as shown: 

X[ X? ...    . A(,_i A;, G 
1 -A-2 ... JV J( _ i -Aft Lr 

Dl Dn ... L\_l Dh 

Compute: 

D, = X'i - X'/ 
G' = XI + XI + . . . + X'b 

G" = XI' + Xi' + ... + XL' 
G'" = sum of all observations on treatments which occur once only. 

G = G' + G" + G"' 

(3) Compute 

Li = (6 - 1) (Di - D2) + (b - 3) (L\ - D3) + (b - 5) (A_i - L\) + . . . 
where the sum is over 6/2 terms if 6 is even, and (6 — l)/2 terms if 6 is odd. 

(4) Compute 

tf = (G" - G')/mb 

(5) If there are m treatments in each group A; or A;', then we may estimate the first block effect as 

6i = Li/2m6. 

(6) Compute: 

62 = &i + D2/m + H 
bi = &, + D3/m + // 

6, = 6ft_! + Di/m + H. 
bi, b2, . . . , bh are the estimated block effects. 

Check:  The sum of the estimated block effects should equal zero. 

(7)   The estimated treatment effects tt are computed as follows: 

If the treatment occurs twice, the estimated treatment effect is the average of the two 
observations minus the average of the estimated block effects for the two blocks in which the 
observations occur. 

If the treatment occurs once, the estimated treatment effect is the observation on the 
treatment minus the estimate of block effect for the block in which the treatment occurs. 

Check: The sum of the estimated treatment effects should equal G — \{G' + G"). 
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Example 

(1)   See Table 13-7. 
Sum of group Ax'  = 38 = X,' 
Sum of group Ax" = 8 = Xx" 

Sum of group A2'   = 23 = X2' 
Sum of group A," = 49 = X," 

Sum of group A/   = —12 
Sum of group A/' = 20 

X3' 

(2) X/ 
X," 

38 
8 

£>,    = 30 

X2'   = 
X2" = 

23 
49 

D, -26 

AY 
X," 

-12 
20 

G'  = 49 
G" = 77 

D,    = -32 

G" = 49 
G" = 77 
G'" = 198 (from Table 13-7) 
G = 324 (from Table 13-7) 

(3)   In the example, 6 = 3 (odd), and there will be only one term. 
Z,, = (3 - 1) (30 + 26) 

= (2) (56) 
= 112 

(4) H = 77 -49 
4(3) 

_ 28 
12 

= 2.33 

(5) 

(6) 

6i = 2mb 
112 

(2) (4) (3) 
= 4.67 

62 = = 4.67 + 

= 0.50 

-26 
4 + 2.33 

h - = 0.50 + 

= -5.17 

-32 
4 + 2.33 

Check: öi + b2 + 6» = 0. 
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Example (cont) 

(7)   Treatments 1 through 12 occur twice.    In estimating these treatments, we need the following 
averages of block effects: 

6i + 6,       -0.50 
2 2 

= -0.25 

Öl   +   &2 
2 

5.17 
2 

= 2.58 

&2   +  &3 
2 

-4.67 
2 

= -2.33 

Treatments 1 through 4 (occurring in Groups A/ and A/', in blocks 1 and 3) are estimated 
as follows: 

h = 8-+~- + 0.25 

= 4.75 

h = 7-~ + 0.25 

= 6.25 

t, = ^ + 0.25 

= 8.25 

<4 = ^° + 0.25 

= 4.75 

Treatments 5 through 8 (occurring in Groups A'2 and A", in blocks 1 and 2) are estimated 
as follows: 

*. = ^ - 2.58 

= 5.92 

<6 = Mr- - 2.58 

= 6.42 

1, = ^f^2 - 2.58 

= 8.42 

h = ^J^ - 2.58 

= 4.92 
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Example (cont) 

Treatments 9 through 12 (occurring in Groups A/ and A,", in blocks 2 and 3) are estimated 
as follows: 

U 
1 +5 + 2.33 

= 4.33 

0+_7 
2 

= 5.83 

2.33 

tn = —2~ + 2.33 

tn = - 

= 1.83 

-8 + 6 
2.33 

1.33 

Treatments 13 through 42 occur only once, and are estimated as follows: 

11 
5 

17 - 
14 - 
12 - 
13 - 
14 - 
12 - 
8 - 

21 - 

4.67 = 
4.67 = 

6.33 
0.33 

12.33 
9.33 
7.33 
8.33 
9.33 
7.33 
3.33 

16.33 

10 
9 
6 
7 
6 
4 
7 
7 
9 

10 

0.50 
0.50 

= 9.50 
= 8.50 
= 5.50 
= 6.50 
= 5.50 
= 3.50 
= 6.50 
= 6.50 
= 8.50 
= 9.50 

5 
-1 
-3 
-6 

2 
-2 
-2 

0 
1 
2 

- (-5.17) 
- (-5.17) 

10.17 
4.17 
2.17 

-0.83 
7.17 
3.17 
3.17 
5.17 
6.17 
7.17 

Check: ]TJ U = 261.00;    G - ± (G' + G") = 324 - 63 = 261. 
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13-4.3.2.2    Testing and Estimating Differences in Treatment Effects.    To test for differences in 
treatment effects, we proceed as follows: 

Procedure. 

(1)   Choose a, the significance level of the test. 

(2)   Look up F^a (t - 1, N - b - t + 1), in Table A-5. 

(3)   Compute S„ = B\/kl + B\/k» + . . . + B\/kh - G*/N. 

(4)   Compute S' = (C - G"Y/2bm 

(5)   From each of the observations in A[ subtract the observation on the same treatment in A". 

Call these differences du, du, ..., d\m, and compute 
Si = (d*n + d*n + . . . + d\m)/2 - D\/2m. 

Compute the comparable quantities Si, S3, . . . , Sb. 

(6)   Compute: Se = S' + 5i + S2 + . . . + S„ 
and 

s2 = S./(N - b - t + 1). 

(7)   Compute    S = (sum of squares of all the observations) — G-/N. 

(8)   Compute   St = S - S„ - Se. 

(9)   Compute    F = (N - b - t + l)S,/(t - 1)5.. 

(10)   If F > Fi_„, conclude that the treatments differ; otherwise, conclude that the experiment 
gives no reason to believe that the treatments differ. 
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Example 

(1) Let a = .01 

(2) t = 42, b = 3, N = 54    (see Table 13-6). 
t - 1 = 41, N - b - t + 1 = 10 
F.M (41,10) = 4.17 

(3) See Table 13-7. 

e       (2UI2   ,   (118):   i   izJl: _ (3241s 
66 ~ " 18    "*"    18    ^     18 54 

= 5 ■?4 - l°T~ = 3321.333 - 1944.0 18 54 
= 1377.333 

(AS        ?> _ {M^JQl = 784 
w       *   ~~ J2) (3) (4)       24 

= 32.667 

(5) du = 7 di;i = 12 
d„ = 2 d14 = 9 Di = 30 

Si = 278_900 = 139_1125 

^ 8 

= 26.5 
d21 = - 9 d„ = - 2 
d22 = - 12 d34 = - 3 D, = - 26 

S2 = ?|8 _ 84 5 = 119 _ 845 

= 34.5 
du = — 6 dj3 = — 5 
d„ = - 7 d:u = - 14 D3 = - 32 

S, = 3|^ - 128 = 153 - 128 

= 25 

(6) Sc = 32.667 + 26.5 + 34.5 + 25 
= 118.667 

, _ 118^67 
S" ~~      10  " 

= 11.8667 

(7) S = 3862 - ^~~£ = 3862 - 1944 

= 1918 

(8) St = 1918 - 1377.333 - 118.667 
= 422 

(as        p =     (10) (422) _4220_ 
K ' (41) (118.667)      4865.347 

= 0.8674 

(10)   Since F is not greater than F.9B> we say there is not sufficient evidence to conclude that 
treatments (rods) differ. 
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13-5    LATIN SQUARE PLANS 

13-5.1     PLANNING 

A Latin square plan (or the Youden square plans in Paragraph 13-6) is useful when it is necessary 
or desirable to allow for two specific sources of non-homogeneity in the conditions affecting test 
results. Such designs were originally applied in agricultural experimentation when the two di- 
rectional sources of non-homogeneity were simply the two directions on the field, and the "square" 
was literally a square plot of ground. Its usage has been extended to many other applications 
where there are two sources of non-homogeneity that may affect experimental results — for example, 
machines, positions, operators, runs, days. A third variable, the experimental treatment, is then 
associated with the two source variables in a prescribed fashion. The use of Latin squares is 
restricted by two conditions: 

(1) the number of rows, columns, and treatments must all be the same; 
(2) there must be no interactions between row and column factors (see Chapter 12, Para- 

graph 12-1.1, for definition of interaction). 

Youden square plans (Paragraph 13-6) are less restrictive than Latin squares; the number of rows, 
columns, and treatments need not be the same, but only certain number combinations are possible. 

As an example of a Latin square, suppose we wish to compare four materials with regard to their 
wearing qualities. Suppose further that we have a wear-testing machine which can handle four 
samples simultaneously. Two sources of inhomogeneity might be the variations from run to run, 
and the variation among the four positions on the wear machine. In this situation, a 4 X 4 Latin 
square will enable us to allow for both sources of inhomogeneity if we can make four runs. The 
Latin square plan is as follows:  (The four materials are labelled A, B, C, D). 

A 4x4 Latin Square 

Position Number 

Run (1) (2) (3) (4) 

1 A B C D 
2 B C D A 
3 C D A B 
4 D A B C 

Examples of Latin squares from size 3 X 3 to 12 X 12 are given in Table 13-8. In the case of 
the 4x4 Latin square, four are given; when a 4 X 4 Latin square is needed, one of the four should 
be selected at random.    The procedure to be followed in using a given Latin square is as follows: 

(a) Permute the columns at random; 
(b) Permute the rows at random; 
(c) Assign letters randomly to the treatments. 
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TABLE  13-8.    SELECTED LATIN SQUARES 

3X3 4X4 

12 3 4 

ABC A B C D A  B C D A  B   C   D A   B   C   D 
B  C   A B A D C B   C D A B   D A  C B   A   D C 
CAB C D B A C   D A B C   A   D B C   D A  B 

D C A B D A B C D C   B   A D C   B   A 

5X5 6X6 7 X7 

A B C D E A  B C D E   F A B C D E F   G 
B A E C D B   F D C   A   E B C D E  F G  A 
C D A E B C   D E F   B   A C D E F   G A  B 
I) E B A C D A F E  C   B D E F G  A B  C 
E C D B A E  C A B   F   D E F G A  B C   D 

F   E B A   D C F G A B  C D E 
G  A  B   C   D E   F 

8X8 9X9 10X10 

ABCDEFGH       ABCDEFGHI        ABCDEFGHIJ 
B C D E F G H A B C D E F G H I A B C D E F G H I J A 
C D E F G H A B C D E F G H I A B C D E F G H I J A B 
D E F G H A B C D E F G H I A B C D E F G H I J A B C 
E F G H A B C D E F G H I A B C D E F G H I J A B C D 
F G H A B C D E F G H I A B C D E F G H I J A B C D E 
G H A B C D E F G H I A B C D E F G H I J A B C D E F 
H A B C D E F G H I A B C D E F G H I J A B C D E F G 

I A B C D E F G H I 
J 

J 
A 

A 
B 

B 
C 

C 
D 

D 
E 

E 
F 

F 
G 

G 
H 

H 
I 

11 XII 12 X 12 

ABC D E F G H I J K A B  C D E F G H I J K L 
BCD E   F G H I J K A B C   D E F G H I J K L   A 
C   D E F   G H I J K A B C D E F G H I J K L A  B 
D E   F G  H I J K A B C D E   F G H I J K L A B  C 
E  F   G H I J K A B C D E F   G H I J K L A B C   D 
F   G  H I   J K A B C D E F G  H I J K L A B C D E 
G   H I J   K A B C D E F G H I J K L A B C D E  F 
H I   J K A B C D E F G H I   J K L A B C D E F   G 
I   J   K A  B C D E F G H I J   K L A B C D E F G  H 
J   K A B  C D E F G H I J K L A B C D E F G H I 
K A  B C   D E F G H I J K L   A B C D E F G H I   J 

L A  B C D E F G H I J   K 
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(If squares of 5 X 5 and higher are used very frequently, then, strictly speaking, each time we use 
one we should choose a square at random from the set of all possible squares. Fisher and Yates(3) 

give complete representation of the squares from 4 X 4 to 6 X 6, and sample squares up "to the 
12 X 12. 

The results of a Latin square experiment are recorded in a two-way table similar to the plan 
itself. The treatment totals and the row and column totals of the Latin square plan are each 
directly comparable without adjustment. 

13-5.2    ANALYSIS 

The analysis of Latin and Youden Squares (see Paragraph 13-6) is based on essentially the same 
assumptions as the analysis of randomized blocks. The essential difference is that in the case of 
randomized blocks we allow for one source of inhomogeneity (represented by blocks) while in the 
case of Latin and Youden squares we are simultaneously allowing for two kinds of inhomogeneity 
(represented by rows and columns). If we let Y ijm be the observation on the ith treatment which 
occurs in the yth row and rath column, then we assume that Y!jm is made up of four components; i.e., 

Y jjm  =   (pi + Pj + Km + e,7„,, 

where pj is a term peculiar to the yth row, and is constant regardless of column or treatment 
effects. 

Km is a term peculiar to the mth column, and is denned similarly to pj. 

<Pi is a term peculiar to the ith treatment, and is the same regardless of the row or column 
in which the treatment occurs. It may be regarded as the average value of the ith 
treatment for any given row (or column) averaged over all columns (or rows), assuming 
there is no experimental error. 

e,Jm is the experimental error involved in the observation Y!jm. 

As in the case of randomized blocks, in order to make interval estimates, or to make tests, we 
generally assume that the experimental errors (e,jm's) are each independently and normally dis- 
tributed. However, provided the experiment was randomized properly, failure of the latter 
assumption will in general not cause serious difficulty. 

In the analysis, we assume the data are exhibited in a two-way table following the plan. We 
use the following notation for the various totals: 

Ti = Sum of the observations on the ith treatment; 

Ri = Sum of the observations in the ith row; 

C, = Sum of the observations in the ith column; 

G = Sum of all the observations. 
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Data Sample 13-5.2 — Temperature Reference Cells 

This is a study of chemical cells used as a means of setting up a reference temperature. For 
various reasons, only one thermometer could be applied to a cell at one time. The columns are 
the four thermometers and the rows are the four cells investigated. The letters refer to four runs, 
each run made on a separate day. The readings are converted to degrees Centigrade; only the 
third and fourth decimal places are recorded, because all the readings agreed up to the last two 
places. 

Cells 

Thermometers 

Total Mean 

I II III IV 

1 
2 
3 
4 

A    36 
C    17 
B    30 
D    30 

B    38 
D    18 
C    39 
A    45 

C    36 
A    26 
D   41 
B    38 

D    30 
B    17 
A    34 
C    33 

Ä, = 140 
R2 = 78 
R3 = 144 
i?4 = 146 

35.0 
19.5 
36.0 
36.5 

Total d = 113 C2 = 140 C3 = 141 C, = 114 G = 508 

Mean 28.25 35.0 35.25 28.5 

13-5.2.1 Estimation of Treatment Effects. The estimate t{ of the ith treatment effect ^>, can be 
obtained directly by the treatment average T,-/r, where r is the number of times the treatment 
occurs (r also equals the number of treatments, the number of rows, and the number of columns). 

For example, from Data Sample 13-5.2: 

TA = 141 T(: = 125 

TB = 123 TD = 119 

r = 4, and 

tA = 141/4 
= 35.25 

tc = 125/4 
= 31.25 

tB = 123/4 
= 30.75 

tD = 119/4 
= 29.75 
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13-5.2.2    Testing and Estimating Differences in Treatment Effects. 

Procedure 

(1) Choose a, the significance level of the test. 

(2) Look up q^a (r, v) in Table A-10, 
where 

v = (r - 2) (r - 1). 

(3) Compute 

(4) Compute 

e        Rl+ R1 + ■■■ + Rl      £2 

(5) Compute 

„   _ C\±Cl ±_.^+jCj _ & 

(6) Compute 

5 = (sum of squares of all the observa- 
tions) — G-/r- 

(7) Compute: 

(r - 2) (r - 1) 
and 

(8)   Compute 

w = 7,_„ s/vV 

(9) If the absolute difference between any two 
estimated treatment effects exceeds w, de- 
cide that the treatment effects differ; 
otherwise, decide that the experiment gives 
no reason to believe the treatment effects 
differ. 

Example 

(1) Let a = .05 

(2) From Data Sample 13-5.2 : 

r = 4, 
V = 6 

7.95 (4. .6) = 4.90 

(3) 

st 
64796 

4 

= 16199 - 

= 70 

258064 
16 

16129 

(4) 

sr 
67736 

4 

= 805 

16129 

(5) 

sc 
65246 

4 

= 182.5 

16129 

(6) 

S = 17230 - 
= 1101- 

16129 

(7) 

(8) 

,      43.5 
8-=-g- 

= 7.25 
s = 2.693 

w = (4.90) (2.693)/V4 
= 6.60 

(9) The largest difference between pairs of 
treatment effects is 5.50, which does not 
exceed 6.60. We conclude that treat- 
ments (runs) do not differ. 

Note: We can make simultaneous statements about the differences between pairs of treatments i 
and j, with confidence 1 — a that all the statements are true simultaneously. The statements 
are, for all i and j, 

ti  —  tj  —  W  <  tpi  —  <pj  < t,-  —  tj + IV. 
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13-5.2.3    Estimation of Row (or Column) Effects.    The row (or column) effects can be estimated 
directly by subtracting G/r- from the row (or column) averages.    That is, we estimate pt by 
rt = Rt/r - G/r2, and «,- by c,- = C;/r - G/r2. 

For example, from Data Sample 13-5.2 : 

G/r"- = 508/16 
31.75 

r-i = 

r-i 

140 
4 

- 31.75 

= 3.25 

78 
4 

31.75 

= - 12.25 

144 
4 

- 31.75 

= 4.25 

146 
4 

- 31.75 

= 4.75 

Ci   = 
113 
4 

= - 3.50 
140 

4 

= 3.25 

= M! 
4 

= 3.50 

= 11^ 
4 

= - 3.25 

- 31.75 

31.75 

31.75 

- 31.75 

13-5.2.4    Testing and Estimating Differences in Row (or Column) Effects. 

Procedure 

(1) 
through^ Same as in Paragraph 13-5.2.2 
(7) 

(8)   Compute 

w qs/\/r 

(9) If the absolute difference between any two 
estimated row effects r, exceeds w, con- 
clude that the row effects differ; otherwise, 
there is no reason to believe that row 
effects differ. 

If the absolute difference between any two 
estimated column effects c, exceeds w, con- 
clude that the column effects differ; other- 
wise there is no reason to believe that 
column effects differ. 

Example 

Using Data Sample 13-5.2 : 
(1) s = 2.693, 
through {and  ordinarily  would  have  already 
(7) j been computed for the test of Para- 

graph 13-5.2.2. 

(8) 

w = 6.60 

(9)   See Paragraph 13-5.2.3. 
There is at least one pair of row effects that 
differ by more than 6.60. We therefore 
conclude that rows (cells) do differ. 

There is at least one pair of column effects 
that differ by more than 6.60. We there- 
fore conclude that columns (thermometers) 
do differ. 

Note: We can make simultaneous statements about the differences between pairs of rows i and j 
with confidence 1 — a that all the statements are simultaneously true. The statements are, for 
all i and j, 

r{ - rt■ — w < pi — pj < rt - r> + w. 

(For a similar set of statements about the columns, replace 

r,-, rjt pi, pj, by d, Cj, Ki, KJ). 
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13-6    YOUDEN SQUARE PLANS 

13-6.T     PLANNING 

The Youden square, like the Latin square, is used when we wish to allow for two kinds of inhomo- 
geneity. The conditions for the use of a Youden square, however, are less restrictive than for the 
Latin square. The use of Latin square plans is restricted by the fact that the number of rows, 
columns, and treatments must all be the same. Youden squares have the same number of rows and 
treatments, but a fairly wide choice in the number of columns is possible. We use the following 
notation: 

t = number of treatments to be compared; 

b = number of levels of one source of inhomogeneity (rows); 

k = number of levels of the other source of inhomogeneity (columns); 

r = number of replications of each treatment. 

In a Youden square, t = b and k = r. 

In Paragraph 13-5 (Latin Square plans), an example was shown in which we wished to test four 
materials with regard to their wearing qualities. There were two sources of inhomogeneity; these 
were the variation among the four positions on the machine, and the variations from run to run. 
In order to use the Latin square plan, we had to make 4 runs. A Youden square arrangement for 
this case would require only 3 runs. In all the plans given in Table 13-9, the analysis is essentially 
the same; and for each of the designs, all differences between treatment effects are estimated with 
the same precision. 

The procedure to be followed in using a given Youden square is as follows: 

(a) Permute the rows at random; 

(b) Permute the columns at random; 

(c) Assign letters at random to the treatments. 

The results of an experiment using a Youden square plan are recorded in a-two-way table which 
looks like the plan itself.    See the plans shown in Table 13-9. 

In some instances where there are two sources of inhomogeneity, a suitable Latin or Youden 
square may not exist. For a number of sets of values of t, b, and k, other plans or arrangements 
do exist which enable the experimenter to allow for the two sources of heterogeneity, in a fairly 
simple manner. Because the analysis and interpretation is more complicated than for the plans 
given in this Chapter, a statistician should be consulted. 
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TABLE  13-9.    YOUDEN SQUARE ARRANGEMENTS (r < 10) 

Index 

Plan 
Number r = b r = k X E = t\/rk                                 Remarks 

1 3 2 1 3/4 * 
2 4 3 2 8/9 * 
3 0 4 3 15/16 * 
4 6 5 4 24/25 * 
0 7 3 1 7/9 
6 7 4 2 7/8 -(•Complement of Plan 5 
7 7 6 0 35/36 * 
8 8 7 6 48/49 * 
9 9 8 7 63/64 * 

10 10 9 8 80/81 * 
11 11 0 2 22/25 
12 11 6 3 11/12 Complement of Plan 11 
13 11 10 9 99/100 * 
14 13 4 1 13/16 
15 13 9 6 26/27 Complement of Plan 14 
16 15 7 3 45/49 
17 15 8 4 15/16 Complement of Plan 16 
18 16 6 2 8/9 
19 16 10 6 24/25 
20 19 9 4 76/81 
21 19 10 0 19/20 Complement of Plan 20 
22 21 5 1 21/25 
23 25 9 3 25/27 
24 31 6 1 31/36 
25 31 10 3 93/100 
26 37 9 2 74/81 See Cochran and Cox<2> pp. 529-535. 
27 57 8 1 57/64 
28 73 9 1 73/81 
29 91 10 1 91/100J 

* Blocks in these Plans are columns of Latin squares with one row deleted. 
t The "complement" of a plan is developed as follows: Construct the first block (column) by writing all treatments 

that did not appear in the first block of the original plan. With these letters as starting points, complete each row 
by writing in alphabetical order all remaining treatment letters followed by A, B, C, . . . until every treatment letter 
appears once in each row. For example, Plan 6 is developed from Plan 5 as follows: The first block of Plan 5 is ABD; 
its complement and therefore the first block of Plan 6 is CEPG.    The complete layout for Plan 6 is: 

Block 
Row 

1 2 3 4 5 6 7 

1 C D E F G A B 
2 E F G A B O D 
3 F G A B C D E 
4 G A B C D E F 

Note:   The detailed plans given are only those which are not easily derivable from other designs 
see Index at beginning of this Table. 

Plan 5:   f = fa = 7, r = fc=3 

Block 
Row 

1 2 3 4 5 6 7 

1 A B C D E F G 
2 B C D E F G A 
3 D E F G A B C 

13-37 



AMCP 706-112 PLANNING AND ANALYSIS OF EXPERIMENTS 

TABLE  13-9.    YOUDEN SQUARE ARRANGEMENTS (r < 10) (Continued) 

Plan 11:   f = fc= llrr = lc=5 

Block 
Row 

1 2 3 4 5      6 7 8 9 10 11 

1 A B C D E     F G H I J K 
2 E F G H I '   J K A B C D 
3 F G H I K A B C D E 
4 G H I J K    A B C D E F 
5 I J K A B     C D E F G H 

Plan 14:   t = b= 13,r = fc = 4 

Block 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 A B C D E F G H I J K L M 
2 B C D E F G H I J K L M A 
3 D E F G H I J K L M A B C 
4 J K L M A B C D E F G H I 

Plan 16:   i = b = 15 , r = k = 7 

Block 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 A B C D E F G H I J K L M N O 
2 B C D E F G H I J K L M N 0 A 
3 C D E F G H I J K L M N O A B 
4 E F G H I J K L M N O A B C D 
5 F G H I J K L M N O A B C D E 
6 I J K L M N 0 A B C D E F G H 
7 K L M N 0 A B C D E F G H I J 

Plan 18:   f t = b = 16,r = Jc = 6 

Row 
Block 

12     3     4 5 6 7 8      9 10 11 12 13 14 15 16 

1 A B C D E F G H I J K L M N O P 
2 B C D A F G H E J K L I N O P M 
3 C D A B G H E F K L I J O P M N 
4 E F G H I J K L M N O P A B C D 
5 L I J K P M N O D A B C H E F G 
6 M N O P A B C D E F G H I J K L 
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TABLE  13-9.    YOUDEN SQUARE ARRANGEMENTS (r < 10) (Continued) 

Plan 19:   t = b = 16, r = k = 10 

Block 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 A B C D E F G H I J K L M N 0 P 
2 C A B E F D J I H G M K L P N 0 
3 D C A K M G H E L I J B P 0 F N 
4 N E P A H B D C F K O G I J L M 
5 M N 0 P B A F D E C G I J H K L 
6 B J H G A I L 0 M N D C E F P K 
7 L K I B 0 P N A D F C H G E M J 
8 J H F L G M A P K 0 B N C D E I 
9 I P L 0 N K C M J A H E F B D G 

10 0 M K J L N P G A E F D B I C H 

Plan 20: t = b = 19,r = = k = 10 

Bloct 
Row 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 .15 16 17 18 19 

1 A B C D E F G H I J K L M N O P Q R S 
2 C D E F G H I J K L M N O P Q R s A B 
3 E F G H I J K L M N 0 P Q R s A B C D 
4 F G H I J K L M N O P Q R S A B C D E 
5 G H I J K L M N 0 p Q R S A B C D E F 
6 H I J K L M N O P Q R S A B C D E F G 
7 K L M N O P Q R s A B c D E F G H I J 
8 N O P Q R S A B c D E F G H I J K L M 
9 O P Q R S A B C D E F G H I J K L M N 

Plan 22:   t = fe = 21, r = k = 5 

Block 
Row 

1 2 3 4 5 6 7 8 9 10   11 12 13 14 15 16 17 18 19 20 21 

1 A B C D E F G H I J     K L M N O P Q R S T U 
2 B C D E F G H I J K    L M N O P Q R S T U A 
3 E F G H I J K L M N    O P Q R S T U A B C D 
4 O P Q R S T U A B C    D E F G H I J K L M N 
5 Q R S T U A B C D E    F G H I J K L M N O P 
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13-6.2    ANALYSIS 

The same model is used, and the same assumptions are made, as in the Latin square analysis in 
Paragraph 13-5.2.    The analysis presented here is sometimes called the intrablock analysis. 

In the analysis we assume that the data are exhibited in a two-way table following the plan. 
(See the plans given in Table 13-9).    We label the various totals as follows: 

Ti = sum of the observations on the ith treatment; 

Ri = sum of the observations in the ith row; 

C, = sum of the observations in the ith column; 

G = sum of all observations. 

Data Sample 13-6.2 — Intercomparison of Thermometers* 

The example involves an intercomparison of thermometers. Seven thermometers, designated 
by the letters A, B, C, D, E, F, G, were set up in a bath. The bath temperature could not be kept 
exactly constant, and the experiment was designed so that valid comparisons could be made among 
the thermometers, despite the variations in bath temperature. 

The seven thermometers were read in sets of three, as follows: 

Order of Reading Within a Set 

Set 1 2 3 

1 A B D 
2 E F A 
3 B C E 
4 F G B 
5 C D F 
6 G A C 
7 D E G 

The two sources of inhomogeneity here are the order of reading within a set, and the set-to-set 
variation. 

Number of treatments (thermometers)      t = 1 
Number of rows (sets)     6 = 7 
Number of columns (order)     k = 3 
Number of replications of each treatment      r = 3. 

* Adapted with permission from Statistical Methods for Chemists (pp. 102-105) by W. J. Youden, copyright, 1951, John Wiley and Sons, Inc. 
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Data Sample 13-6.2 — Intercomparison of Thermometers (cont) 

The thermometers had scale divisions of one-tenth of a degree, and were read to the third place 
with optical aid. The readings were made just above 30°C; for convenience, only the last two 
places are entered in the following tabulation, i.e., the entry 56 represents a reading of 30.056°C. 

Order of Reading Within a Set 

Set 1 2 3 Total 

1. A 56 B 31 D 35 R,  = 122 
2 E 16 F 41 A 58 R2 = 115 
3 B 41 C 53 E 24 Ä, = 118 
4 F 46 G 32 B 46 A4 = 124 
5 C 54 D 43 F 50 Ä5 = 147 
6 G 34 A 68 C 60 R6 = 162 
7 D 50 E 32 G 38 R7 =  120 

Total d = 297 C2 = 300 C, = 311 G = 908 

13-6.2.1    Estimation of Treatment Effects.    The estimate {,-, of the ith treatment effect <pi is 

U =Qi/Er + G/bk, 

where 

Qt = T; - (n,-i Ä! + ni2R2 + ... + nih Rh)/r 

Ti = total for the ith treatment 

R = total for the row 

na = the number of times the ith treatment occurs in the yth row. 
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13-6.2.1 (cont) 

For example, using Data Sample 13-6.2, 

where E = 7/9, * = r = 3, 6 = 7, Er = 21/9 

TA = 182 

Tn = 118 

Tc = 167 
TD = 128 

QA  = 182 - 122 + 115JL162 

= 182 - 133 

= 49 

122 + 118 + 124 

TE = 72 

T, = 137 

Tc,  = 104 

QE 72 - 
115 + 118 + 120 

72 - 117.66667 
- 45.66667 

Q„ = 118 Qr  = 137 
115 + 124 + 147 

118 - 121.33333 

- 3.33333 

Qc 167 
118 + 147 + 162 

Qa 

167 - 142.33333 

24.66667 

137 - 128.66667 

8.33333 

104 _ 124_+162+_120 

104 - 135.33333 

- 31.33333 

QD =  128 
122 + 147 + 120 

128 - 129.66667 

- 1.66667 

Er 
21 

, bk = 21, 
bk 

9 (49) 
21 "" 

43.238095 

908 
21 

U 

43.238095 

9 (- 45.66667) 
21 

+ 43.238095 

= 21 + 43.238095 

= 64.238095 

- 19.571430 + 43.238095 

23.666665 

tn   = 
9 (- 3.33333) 

21 
+ 43.238095 

9 (8.33333) 
21 

+ 43.238095 

= - 1.428570 + 43.238095 

= 41.809525 

= 3.571427 + 43.238095 

= 46.809522 

9 (24.66667) 
21 

+ 43.238095 to 
9 (- 31.33333) 

21 
+ 43.238095 

= 10.571430 + 43.238095 

= 53.809525 
- 13.428570 + 43.238095 

29.809525 

9 (- 1.66667) 
21 

43.238095 

= - 0.714287 + 43.238095 

= 42.523808 

13-42 



YOUDEN SQUARE PLANS AMCP 706-112 

13-6.2.2    Testing and Estimating Differences in Treatment Effects. 

Procedure 

(1) Choose a, the significance level of the test.       (1)   Let 

(2) Look up <7i_„ (t, v) in Table A-10, 
where 

v = (b - 1) (r - 2) 

(3) Compute 

„     Qr + Ql + ■ • . +Q? 
A' _                  Er 

(4) Compute 

0         i?; + i?; + . .. + Rl G- 
A bk 

(5) Compute 

a    ci + a + .. . +C; G2 

br             b bk 

(6) Compute 

S = (sum  of  squares  of  all  observa- 
tions) - G'/bk 

(7)   Compute: 

O Oi Or Ofi s- = 
(b - 1) (r - 2) 

and 

(8)   Compute 

»' = <7i-a s/\/Er 

Example 

a =  .05 

(2)   Using Data Sample 13-6.2, 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

v = 6 (1) = 6 
<7.95 (7, 6) = 5.90 

5, = ~ (6160.00019) 

Sr   = 

2640.000 

119662      824464 
21 

= 627.143 

Sc = ^^ - 39260.190 

= 15.524 ■ 

S = 42558 - 39260.190 
= 3297.810 

s2 = 15.143/6 
= 2.524 

s = 1.589 

w = 
5.90 (1.589) 

1.528 

= 6.136 

(9)   If the absolute difference between any two       (9)   See  the  estimated   treatment  effects  in 
estimated treatment effects exceeds w, de- 
cide that the treatment effects differ; other- 
wise, decide that the experiment gives no 
reason to believe the treatment effects 
differ. 

Paragraph 13-6.2.1. Taken in pairs, there 
are differences which exceed 6.136, and we 
conclude that thermometers do differ. 

Note: We can make simultaneous statements about the differences between pairs of treatments 
i and j, with confidence 1 — a that all the statements are simultaneously true. The statements 
are, for all i and j, 

t,- — tj — IV < <pi — tpj < ti — tj + w. 
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13-6.2.3    Estimation of Column Effects.    The column effects can be estimated directly from the 
column means; i.e., the estimate of the ith column effect is 

c. = Ci/b - G/bk. 

For example, using Data Sample 13-6.2, 

r   _ 297      908 
Cl "   7   ~ 21 

= 42.43 - 43.24 
= - 0.81 

C2 = ^0 _ 43.24 

= 42.86 - 43.24 

= - 0.38 

311 
C, = *Y ~ 43-24 

= 44.43 - 43.24 

= 1.19 

13-6.2.4    Testing and Estimating Differences in Column Effects. 

Procedure Example 

(1)   Choose a, the significance level of the test.       (1)   Let a = .05 

(2)   Look up q^a (k, v) in Table A-10, 
where 

y=(b-l)(r- 2). 

(2) 

„ = 6 (1) = 6 
q.tt (3,6) =4.34 

(3) (  " 
\        , I Same  as  Steps   (3)   through   (7)   of 
tnroughj Paragraph 13.6 2.2. 

(8)   Compute 

w. q^a s/\/b 

(9) If the absolute difference between any two 
estimated column effects exceeds wr, de- 
cide that the column effects differ; other- 
wise, decide that the experiment gives no 
reason to believe the column effects differ. 

throu hlSee Para«raPh 13-6.2.2. 

(7) [ 1.589 

(8) 

iv c 
4.34 (1.589) 

2.646 
= 2.61 

(9) There are no differences between pairs of 
column effects that exceed 2.61. We con- 
clude that the column effects (order of 
reading within set) do not differ. 

Note: As in the case of treatment effects, we can make a set of simultaneous statements about 
the difference between pairs of columns i and j.    The statements are, for all i and j, 

c, Cj   —  Wc   <   Ki   —   Kj   <  C;   —  Cj +  Wc . 

13-44 



YOUDEN SQUARE PLANS AMCP 706-112 

13-6.2.5    Estimation of Row Effects.    The estimate of the /th row effect pj is r-, = Q'j/Er, 

where 
Q'j = Rj - (Bu Tr + »,;r, + ... + nw r»)/r 

and, as before, w,; is the number of times the ith treatment occurs in the /th row. 

For example, using Data Sample 13-6.2: 

Q[ = 122 - 
182 + 118 + 128 

= 122 - 142.67 

= - 20.67 

Q>2 = 115 - 72+A37L+A82 

= 115 - 130.33 
= - 15.33 

118 + 167 + 72 
Q't = 118 i,  - — 3 

118 - 119.00 
1.00 

Q\ = 124 
137 + 104 + 118 

124 - 119.67 

4.33 

QL = 147 - 
167 + 128 + 137 

= 147 - 144.00 
= 3.00 

Q'6 = 162 - 
104 + 182 + 167 

= 162 - 151.00 
= 11.00 

Q', = 120 - 

= 120 - 
= 18.67 

128 + 72 + 104 
3 

= 120 - 101.33 

Er = 
21    1 9 
9 ' Er     21 

9 (- 20.67) 
11 21 

= - 8.86 

T'l 
9 (- 15.33) 

21 
= - 6.57 

r% 
9 (-1.00) 

21 

= - 0.43 

9 (4.33) 
21 

= 1.86 

r5 
9 (3.00) 

21 

= 1.29 

9 (11.00) 
21 

= 4.71 

9 (18.67) 
21 

= 8.00 
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13-6.2.6    Testing and Estimating Differences in Row Effects. 

Procedure 

(1)   Choose a, the significance level of the test. 

(2)   Look up qi-a (b, v) in Table A-10, 
where 

(6 - 1) (r - 2) 

(3) 
through 
(7) 

(8)   Compute 

wr = qi 

Same  as  Steps   (3)   through   (7)   of 
Paragraph 13-6.2.2. 

s/\/k 

(9) If the absolute difference between any two 
estimated row effects exceeds wr, decide 
that the row effects differ; otherwise, decide 
that the experiment gives no reason to 
believe that row effects differ. 

Example 

(1) Let a = .05 

(2) From Data Sample 13-6.2 : 

(6 - 1) (r - 2) = 6 (1) 
= 6 

<7.95 (7, 6) = 5.90 

(3) 
through 
(7) 

(8) 

See Paragraph 13-6.2.2. 
s = 1.589 

Wr 

5.90 (1.589) 
1.732 

= 5.41 

(9) There are differences between pairs of row 
effects that exceed 5.41. Therefore, we 
conclude that rows (sets) do differ. 

Note: As in the case of the treatment and column effects, we can make a set of simultaneous 
statements about the differences between pairs of columns i and j. The statements are, for 
all i and j, 

T;  — Tj  — WV   <  pt  —  pj  < T,   — Tj + WT. 

REFERENCES 
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CHAPTER  14 

EXPERIMENTS TO DETERMINE OPTIMUM CONDITIONS OR LEVELS 

14-1     INTRODUCTION 

In many industrial-type processes, there is a 
measurable end-property whose value is of 
primary interest and which we would like to 
have attain some optimum value. This end- 
property is called yield or response in the lan- 
guage of experimental design. For example, 
the end-property might be: 

(a) the actual yield of the process, which we 
would like to maximize; 

(b) a strength property, which we would like 
to maximize; 

(c) cost, which we would like to minimize; 
or, 

(d) some chemical or physical characteristic 
that would be most desirable at a maximum or 
at a minimum, as specified. 

The value of this primary end-property will 

depend on the values or settings of a number of 
factors in the process which affect the end- 
property. In such cases, the goal of experi- 

mentation is to find the settings of the factors 
which result in an optimum response. Often, 
we are interested in knowing not only the values 
of the variables that result in optimum re- 
sponse, but also how much change in response 
results from small deviations from the optimum 
settings — i.e., we would like to know the na- 
ture of the response function in the vicinity of 

this optimum. 

14-2    THE RESPONSE FUNCTION 

In a factorial experiment where the levels of 
all factors are quantitative (e.g., time, temper- 
ature, pressure, amount of catalyst, purity of 
ingredients, etc.), we can think of the response y 
as a function of the levels of the experimental 
factors. For an n-factor experiment, we could 
write: 

True yield 

where 

y = &(Xi, x2, . . . , xn) 

Xi = level of factor 1 
x2 = level of factor 2 
etc. 

For observed values of y, we can write: 

Y„ = <f> (xu, Xi,,, . . . , x„„) + e„ 

where 

Y„ = the uth observation of y, where u = 
1, 2, . . . , N represent the N observa- 
tions in the factorial experiment; 

Xi„ = level of factor 1 for the wth observation; 
x2u = level of factor 2 for the wth observation; 
etc.; 

and 

e„ = the experimental error of the wth ob- 
servation. 
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The function $ can be called the response 
function. If we could determine the function 
<i>, we could describe the results of the experi- 
ment completely, and could even predict y for 
values of the factors that were not included in 
the experiment (but the function should not be 
used for prediction outside the range of experi- 
ment). Ordinarily, the mathematical form of 
the function is completely unknown, but often 
it can be satisfactorily approximated within a 
limited region by a polynomial in x,„. Just as 
the relation y = * (x) can be represented by a 
curve, the relation between y and two factors 
Xi and Xi, i.e., y = * (xi, x2), can be represented 
by a surface called the response surface, as 
shown in Figure 14-1; or, alternatively, by a 
contour diagram which traces contours of equal 
response as shown in Figure 14-2. 

TIHC . HOURS 

Figure 11^-1.   A response surface. 

Adapted with permission from The Design and Analysis of Industrial 
Experiments, edited by Owen L. Davies, Copyright, 1954, Oliver and 
Boyd, Ltd., Edinburgh. 

Figure 1U-2.    Yield contours for the surface of 
Figure 11^-1 with 2- factorial design. 

Adapted with permission from The Design and Analysis of Industrial 
Experiments, edited by Owen L. Davies, Copyright, 1954, Oliver and 
Boyd, Ltd., Edinburgh. 

The study of response surfaces is a very com- 
plex topic. A general notion of possible appli- 
cations is given here, but no details are pro- 
vided. An extensive bibliography is given at 
the end of this Chapter. Since this is a rela- 
tively new field, the bibliography is fairly 
complete at the time of preparation. 
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14-3    EXPERIMENTAL DESIGNS 

Experimental designs and methods of analysis 
have been developed for fitting polynomials of 
the first and second degree; these designs are 
called first and second order designs, respec- 
tively. One will hear these designs described 
as, for example, "a first order design in 2 dimen- 
sions" or "a second order design in 4 dimen- 
sions" — in general, a kth order design in n 
dimensions. The dimension n refers to the 
number of independent variables (ar,) in the 
response function, and the order k refers to the 
degree of the fitted polynomial function. 

A design in which only one variable is con- 
trolled is a one-dimensional design, and we 
observe y as a function of the single variable x, 
i.e., y = * (x). The first approach in de- 
scribing such a relationship may be that of 
fitting a first order equation, i.e., a straight line 
y = ßo + ßix, as detailed in AMCP 706-110, 
Chapter 5. If it has been determined that the 
relationship cannot be adequately represented 
by a straight line, a second-degree (or higher 
degree) polynomial may be fitted as detailed in 
AMCP 706-110, Chapter 6. A one-dimensional 
design, however, is not usual in this kind of 
experimentation and, ordinarily, more variables 
will be involved. 

If we are interested in studying response y as 
a function of two variables (Xi and x2), we repre- 
sent the function as 

y = $Oi, x2). 

Again, as a first step, we could fit a first order 
model (now the equation of a plane) 

y = ßu + ßiXi + ß2x2. 

Where three or more variables are controlled, 
we have a function of the type 

y = * (zi, x2, . . ., x„). 

A general aim in selecting and constructing 
experimental designs when observing a function 
of several quantitative variables, is that the 
selected design should permit relatively simple 
and straightforward estimation of the coeffi- 
cients of the fitted equation. Two-level fac- 
torial designs are important designs for fitting 
first order models — particularly in the two- 
dimensional case. New designs, with special 
advantageous properties, have been developed 
by G.E.P. Box and followers. Most first order 
designs will provide information about the 
adequacy of the first order model, and second 
order designs are available when first order 
models are inadequate. 

14-4    FINDING THE OPTIMUM 

In general, experimentation proceeds se- 
quentially. Initial levels of the variables are 
chosen so that the levels are either near present 
operating conditions or are believed to be near 
optimum response. A design is chosen, and 
experimental observations are made at values 
of the variables which are specified by the 
design. In general, first order designs will pro- 
vide information on the adequacy of the first 
order model, will indicate whether the response 

is near the optimum, and will indicate the di- 
rection to move to approach closer to the 
optimum. Another first order design may then 
be run at a new position, or a second order 
design may be run at the original position. The 
methods are extremely flexible and useful. A 
complete description of the methods cannot be 
included here, and the reader is advised to con- 
sult the references described in Paragraph 14-5. 
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14-5    RECOMMENDED SOURCES FOR FURTHER STUDY 

The bibliography contains references which 
have been classified into three groups: 

I. Elementary and Introductory Reading 
II. Advanced Reading 

III. Applications. 

Group I contains those articles that will be 
most helpful to the novice. For the reader who 
is completely unacquainted with the techniques, 
the following reading program is suggested. 
First, read the series of articles by Bradley*u 

and Hunter(2) which appeared in Industrial 
Quality Control. Follow this by reading the 
appropriate chapter in Cochran and Cox<3) or 
Davies<4), or by reading the Hunter article*51. 
Another introductory article, which requires a 

higher level of mathematical background, is by 
Box and Hunter(6). From these introductory 
readings, proceed to the articles in Group II or 
III which are of particular interest. 

The classification into the three groups had 
to be somewhat arbitrary. In particular, the 
reader will notice some anomalies in Group II 
where some articles are not highly mathe- 
matical, but have been included for historical 
reasons. The level of mathematics required for 
the Group II references varies a great deal, but 
one can ordinarily predict the level by knowl- 
edge of the journal in which the article appears. 

Group III contains articles that deal pri- 
marily with applications. 
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